## Numerical Integration $=$ Quadrature

1. Numerical integration plays key roles for computing, and some well-known functions are definied as integrals.
2. Numerical integration, also known as quadrature:

Given a sample of $n$ points for a function $f$, find an approximation of $\int_{a}^{b} f(x) d x$.

## Numerical Integration $=$ Quadrature

Interpolatory quadrature, also known as Newton-Cotes rules
let

$$
f(x)=\sum_{i=1}^{n} a_{i} \phi_{i}(x)
$$

where $\phi_{i}(x)$ are basis functions (see Chapter 13 on Interpolation). Then the integral of $f$ :

$$
\int_{a}^{b} f(x)=\sum_{i=1}^{n} a_{i}\left(\int_{a}^{b} \phi_{i}(x)\right)
$$

## Numerical Integration $=$ Quadrature

Newton-Cotes rules:

- $n=1$, midpoint rule

$$
\text { error }=O\left((b-a)^{3}\right)
$$

- $n=1$, trapezoidal rule

$$
\text { error }=O\left((b-a)^{3}\right)
$$

Note: the same order as the midpoint rule

- $n=2$, Simpson's rule

$$
\text { error }=O\left((b-a)^{5}\right)
$$

## Numerical Integration $=$ Quadrature

Composite rules: Let $[a, b]$ be subdivided into $k$ intervals, say, take $\Delta x=\frac{b-a}{k}$, and $x_{i}=a+(i-1) \Delta x$.

- the composite trapezoidal rule is given by

$$
\begin{aligned}
\int_{a}^{b} f(x) & \approx \sum_{i=1}^{k}\left(\frac{f\left(x_{i}\right)+f\left(x_{i+1}\right)}{2}\right) \Delta x \\
& =\left(\frac{1}{2} f(a)+f\left(x_{2}\right)+\cdots+f\left(x_{k}\right)+\frac{1}{2} f(b)\right) \Delta x
\end{aligned}
$$

$$
\text { error }=O\left((\Delta x)^{3}\right) \times \frac{b-a}{\Delta x}=O\left((\Delta x)^{2}\right)
$$

- By a similar scheme, we can also derive a composite Simpson's rule. error $=O\left(\Delta x^{5}\right) \times \frac{b-a}{\Delta x}=O\left(\Delta x^{4}\right)$.


## Numerical Integration $=$ Quadrature

## Adaptive Simpson's quadrature

- Goal: approx. $I=\int_{a}^{b} f(x) d x$ to within an error tolerance $\epsilon>0$.
- step 1: Simpson's rule with $h=(b-a) / 2$

$$
I=S(a, b)-E_{1}:=S_{1}-E_{1}
$$

- step 2: Composite Simpson's rule with $h_{1}=(b-a) / 2^{2}$

$$
I=S\left(a, \frac{a+b}{2}\right)+S\left(\frac{a+b}{2}, b\right)-E_{2}:=S_{2}-E_{2}
$$

- It can be shown that $E_{1} \approx 16 E_{2}$. Then

$$
S_{1}-S_{2}=E_{1}-E_{2} \approx 15 E_{2} .
$$

which implies that

$$
\left|I-S_{2}\right|=\left|E_{2}\right| \approx \frac{1}{15}\left|S_{1}-S_{2}\right|
$$

## Numerical Integration $=$ Quadrature

Adaptive Simpson's quadrature, cont'd

- If $\left|S_{1}-S_{2}\right| / 15<\epsilon$, then $\left|I-S_{2}\right|<\epsilon$. $S_{2}$ is sufficiently accuracy.
- Otherwise, apply the same error estimation procedure to the subintervals $\left[a, \frac{a+b}{2}\right]$ and $\left[\frac{a+b}{2}, b\right]$, respectively to determine if the approximation to the integral on each subinterval is within a tolerance of $\epsilon / 2$
- Recursive algorithm
- MATLAB code: quadtx.m


## Numerical Integration $=$ Quadrature

1. Quadrature rules in a general form

$$
\int_{a}^{b} f(x) d x \approx Q(f)=\sum_{i=1}^{n} w_{i} f\left(x_{i}\right)
$$

where $x_{i}$ are knots, and $w_{i}$ are weights.
2. The choices of $\left\{x_{i}\right\}$ and $\left\{w_{i}\right\}$ determine a quadrature rule.
3. The method of undetermined coefficients fix $\left\{x_{i}\right\}$, choose $\left\{w_{i}\right\}$ so that $Q(f)$ approximate the integral of $f$ for reasonably smooth functions.

## Numerical Integration $=$ Quadrature

Example of the method of undetermined coefficients

- Let $x_{1}=0, x_{2}=1 / 2$ and $x_{3}=1$. pick $f_{1}(x)=1, f_{2}(x)=x$ and $f_{3}(x)=x^{2}$ such that

$$
\begin{aligned}
& \int_{0}^{1} f_{1}(x) d x=w_{1} f_{1}\left(x_{1}\right)+w_{2} f_{1}\left(x_{2}\right)+w_{3} f_{1}\left(x_{3}\right) \\
& \int_{0}^{1} f_{2}(x) d x=w_{1} f_{2}\left(x_{1}\right)+w_{2} f_{2}\left(x_{2}\right)+w_{3} f_{2}\left(x_{3}\right) \\
& \int_{0}^{1} f_{3}(x) d x=w_{1} f_{3}\left(x_{1}\right)+w_{2} f_{3}\left(x_{2}\right)+w_{3} f_{3}\left(x_{3}\right)
\end{aligned}
$$

- Consequently, we have the Simplson's rule

$$
\int_{0}^{1} f(x) d x \approx Q(f)=\frac{1}{6} f(0)+\frac{2}{3} f\left(\frac{1}{2}\right)+\frac{1}{6} f(1)
$$

- By the change of interval $[a, b] \rightarrow[0,1], x=a+(b-a) y$, we have the Simplson's rule on the interval $[a, b]$ :

$$
\int_{a}^{b} f(x) d x \approx Q(f)=(b-a)\left[\frac{1}{6} f(a)+\frac{2}{3} f\left(\frac{b+a}{2}\right)+\frac{1}{6} f(b)\right]
$$

