ECS130

Linear Systems and the LU Decomposition

January 11, 2019

Chapter 3: Linear systems

$$
A x=b,
$$

where $A \in \mathbb{R}^{m \times n}, x \in \mathbb{R}^{n}$ (unknown), and $b \in \mathbb{R}^{m}$.
Applications (section 4.1):

- least squares data fitting, regression
- Tikhonov regularization image alignment, deconvolution

Applications

- Data fitting

(a)

(b)

(c)
- Image alignment

(a)

(b) Input images with keypoints

(c) Aligned images
- Deconvolution

(b) Blurry

(c) Deconvolved

(a) Sharp
(d) Difference

Outline of Chapter 3

1. Solvability of linear systems
2. Elementary matrix operations

- permutation
- row scaling
- elimination

3. Gaussian elimination

- Forward-elimination/substitution
- Back-elimination/substitution

4. LU factorization
5. The need of pivoting - mathematically
6. The need of pivoting - numerically*

* to be discussed after covering Chapter 2.

