

Linear Systems and the LU Decomposition

January 11, 2019

Chapter 3: Linear systems

Ax = b,

where $A \in \mathbb{R}^{m \times n}$, $x \in \mathbb{R}^n$ (unknown), and $b \in \mathbb{R}^m$.

Applications (section 4.1):

- least squares data fitting, regression
- Tikhonov regularization image alignment, deconvolution

Applications

► Data fitting

► Image alignment

(b) Input images with keypoints

(c) Aligned images

► Deconvolution

d (d) Difference

(a) Sharp

(b) Blurry

(c) Deconvolved

Outline of Chapter 3

- 1. Solvability of linear systems
- 2. Elementary matrix operations
 - permutation
 - ▶ row scaling
 - elimination
- 3. Gaussian elimination
 - ▶ Forward-elimination/substitution
 - ▶ Back-elimination/substitution
- 4. LU factorization
- 5. The need of pivoting mathematically
- 6. The need of pivoting numerically*
- * to be discussed after covering Chapter 2.