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Vector spaces over R
Denote a (abstract) vector by ~v. A vector space

V = {a collection of vectors ~v}

which satisfies
I All ~v, ~w ∈ V can be added and multiplied by a ∈ R:

~v + ~w ∈ V , a · ~v ∈ V
I The operations ‘+, ·’ must satisfy the axioms:

For arbitrary ~u,~v, ~w ∈ V,
1. ‘+’ commutativity and associativity: ~v + ~w = ~w + ~v,

(~u+ ~v) + ~w = ~u+ (~v + ~w).

2. Distributivity: a(~v + ~w) = a~v + a~w, (a+ b)~v = a~v + b~v, for all a, b ∈ R.

3. ‘+’ identity: there exists ~0 ∈ V with ~0 + ~v = ~v.

4. ‘+’ inverse: for any ~v ∈ V, there exists ~w ∈ V with ~v + ~w = 0.

5. ‘·’ identity: 1 · ~v = ~v.

6. ‘·’ compatibility: for all a, b ∈ R, (ab) · ~v = a · (b · ~v).



Example

I Euclidean space:

Rn =
{
~a ≡ (a1, a2, . . . , an) : ai ∈ R

}
.

I Addition:
(a1, . . . , an) + (b1, . . . , bn) = (a1 + b1, . . . , an + bn)

I Multiplication:
c · (a1, . . . , an) = (ca1, . . . , can)

I Illustration in R2:

~a

~b
~a+~b

~a

2~a



Example

I Polynomials:

R[x] =

{
p(x) =

∑
i

aix
i : ai ∈ R

}
.

I Addition and multiplication in the usual way,
e.g. p(x) = a0 + a1x+ a2x

2, q(x) = b1x:

I Addition:

p(x) + q(x) = a0 + (a1 + b1)x+ a2x
2.

I Multiplication:

2p(x) = 2a0 + 2a1x+ 2a2x
2.



Span of vectors

I Start with ~v1, . . . , ~vn ∈ V , and ai ∈ R, we can define

~v ≡
n∑

i=1

ai~vi = a1~v1 + a2~v2 + · · ·+ an~vn,

Such a ~v is called a linear combination of ~v1, . . . , ~vn.

I For a set of vectors

S = {~vi : i ∈ I},

all its linear combinations define

spanS ≡
{∑

i

ai~vi : ~vi ∈ S and ai ∈ R
}



Example in R2

I Observation from (c): adding a new vector does not
always increase the span.



Linear dependence

I A set S of vectors is linearly dependent if it contains a
vector

~v =
k∑

i=1

ci~vi, for some vi ∈ S\{~v} and nonzero ci ∈ R.

I Otherwise, S is called linearly independent.

I Two other equivalent defs. of linear dependence:
I There exists {~v1, . . . , ~vk} ⊂ S\{~0} such that

k∑
i=1

ci~vi = 0 where ci 6= 0 for all i.

I There exists ~v ∈ S such that

spanS = span(S\{~v}).



Dimension and basis

I Given a vector space V , it is natural to build a finite
set of linearly independent vectors:

{~v1, . . . , ~vn} ⊂ V .

I The max number n of such vectors defines the
dimension of V .

I Any set S of such vectors is a basis of V , and satisfies

spanS = V .



Examples

I The standard basis for Rn is given by the n vectors

~ei = (0, . . . , 0︸ ︷︷ ︸
i−1

, 1, 0, . . . , 0︸ ︷︷ ︸
n−i

) for i = 1, . . . , n

Since
I ~ei is not linear combination of the rest of vectors.
I For all ~c ∈ Rn, we have ~c =

∑n
i=1 ci~ei.

Hence, the dimension of Rn is n.

I A basis of polynomials R[x] is given by monomials

{1, x, x2, . . . }.

The dimension of R[x] is ∞.



More about Rn

I Dot product: for ~a = (a1, . . . , an),~b = (b1, . . . , bn) ∈ Rn

~a ·~b =
n∑

i=1

aibi.

I Length of a vector

‖a‖2 =
√
a21 + · · ·+ a2n =

√
~a · ~a.

I Angle between two vectors

θ = arccos
~a ·~b
‖a‖2‖b‖2

.

(*Motivating trigonometric in R3: ~a ·~b = ‖a‖2‖b‖2 cos θ.)
I Vectors ~a,~b are orthogonal if ~a ·~b = 0 = cos 90◦.



Linear function

I Given two vector spaces V ,V ′, a function

L : V → V ′

is linear, if it preserves linearity.

I Namely, for all ~v1, ~v2 ∈ V and c ∈ R,

I L[~v1 + ~v2] = L[~v1] + L[~v2].
I L[c~v1] = cL[~v1].

I L is completely defined by its action on a basis of V :

L[~v] =
∑
i

ciL[~vi],

where ~v =
∑

i ci~vi and {~v1, ~v2, . . . } is a basis of V .



Examples

I Linear map in Rn:

L : R2 → R3

defined by

L[(x, y)] = (3x, 2x+ y,−y).

I Integration operator: linear map

L : R[x]→ R[x]

defined by

L[p(x)] =

∫ 1

0

p(x)dx.



Matrix

I Write vectors in Rm in ‘column forms’, e.g.,

~v1 =

v11...
vm1

 , ~v2 =

v12...
vm2

 , . . . , ~vn =

v1n...
vmn

 .
I Put n columns together we obtain an m× n matrix

V ≡

 | | |
~v1 ~v2 . . . ~vn
| | |

 =


v11 v12 . . . v1n
v21 v22 . . . v2n
...

...
...

...
vm1 vm2 . . . vmn


I The space of all such matrices is denoted by Rm×n.



Unified notation: Scalars, Vectors, and Matrices

I A scalar c ∈ R is viewed as a 1× 1 matrix

c ∈ R1×1.

I A column vector ~v ∈ Rn is viewed as an n× 1 matrix

~v ∈ Rn×1.



Matrix vector multiplication

I A matrix V ∈ Rm×n can be multiplied by a vector ~c ∈ Rn: | | |
~v1 ~v2 . . . ~vn
| | |


c1...
cn

 = c1~v1 + c2~v2 + · · ·+ cn~vn.

I Elementwisely, we have
v11 v12 . . . v1n
v21 v22 . . . v2n
...

...
...

...
vm1 vm2 . . . vmn



c1
c2
...
cn

 =


c1v11 + c2v12 + · · ·+ cnv1n
c1v21 + c2v22 + · · ·+ cnv2n

...
c1vm1 + c2vm2 + · · ·+ cnvmn

 .



Using matrix notation

I Matrix vector multiplication can be denoted by

A︸︷︷︸
Rm×n

~x︸︷︷︸
Rn

= ~b︸︷︷︸
Rm

.

I M ∈ Rm×n multiplied by another matrix in Rn×k can
be defined as

M [~c1, . . . ,~ck] ≡ [M~c1, . . . ,M~ck].



Example

I Identity matrix

In ≡

 | | |
~e1 ~e2 . . . ~en
| | |

 =


1 0 . . . 0

0 1
. . .

...
...

. . . . . . 0
0 . . . 0 1

 .

It holds
In~c = ~c for all ~c ∈ Rn.



Example

I Linear map L[(x, y)] = (3x, 2x+ y,−y) satisfies

L[(x, y)] =

3 0
2 1
0 −1


︸ ︷︷ ︸

R3×2

·
[
x
y

]
︸︷︷︸
R2

=

 3x
2x+ y
−y


︸ ︷︷ ︸

R3

.

I All linear maps L : Rn → Rm can be expressed as

L[~x] = A~x,

for some matrix A ∈ Rm×n.



Matrix transpose

I Use Aij to denote the element of A at row i column j.

I The transpose of A ∈ Rm×n is defined as AT ∈ Rn×m

(AT )ij = Aji.

Example:

A =

1 2
3 4
5 6

 ⇒ AT =

[
1 3 5
2 4 6

]
.

I Basic identities:

(AT )T = A, (A+B)T = AT +BT , (AB)T = BTAT .



Examples: Matrix operations with transpose

I Dot product of ~a,~b ∈ Rn:

~a ·~b =
n∑

i=1

aibi =
[
a1 . . . an

] b1...
bn

 = ~aT~b.

I Residual norms of ~r = A~x−~b:

‖A~x−~b‖22 = (A~x−~b)T (A~x−~b)
= (~xTAT −~bT )(A~x−~b)
= ~bT~b−~bTA~x− ~xTAT~b+ ~xTATA~x

(by ~bTA~x = ~xTAT~b) = ‖~b‖22 − 2~bTA~x+ ‖A~x‖22.



Computation aspects

I Storage of matrices in memory:1 2
3 4
5 6

⇒


Row-major: 1 2 3 4 5 6

Column-major: 1 3 5 2 4 6

I Multiplication ~b = A~x for A ∈ Rm×n and ~x ∈ Rn:

Access A row-by-row: Access column-by-column:

1: ~b = 0
2: for i = 1, . . . ,m do
3: for j = 1, . . . , n do
4: bi = bi + Aijxj
5: end for
6: end for

1: ~b = 0
2: for j = 1, . . . , n do
3: for i = 1, . . . ,m do
4: bi = bi + Aijxj
5: end for
6: end for



Linear systems of equations in matrix form

I Example: find (x, y, z) satisfying

3x+ 2y + 5z = 0

−4x+ 9y − 3z = −7
2x− 3y − 3z = 1.

⇒

 3 2 5
−4 9 −3
2 −3 −3

xy
z

 =

 0
−7
1


I Given A = [~a1, . . . ,~an] ∈ Rm×n, ~b ∈ Rm, find ~x ∈ Rn:

A~x = ~b.

I Solution exists if ~b is in column space of A:

~b ∈ colA ≡ {A~x : ~x ∈ Rn} =

{
n∑

i=1

xi~ai : xi ∈ R

}
.

The dimension of colA is defined as the rank of A.



The square case

I Let A ∈ Rn×n be a square matrix, and suppose A~x = ~b
has solution for all ~b ∈ Rn. We can solve

A~xi = ~ei, for i = 1, . . . , n.

m
A
[
~x1 ~x2 . . . ~xn

]︸ ︷︷ ︸
A−1

= In

I The inverse satisfies (why?)

AA−1 = A−1A = In and (A−1)−1 = A.

I Hence, for any ~b, we can express the solution as

~x = A−1A~x = A−1~b.
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