ECS130

Introduction

Monday, January 7, 2019

About

Course: ECS130 Scientific Computing
Professor: Zhaojun Bai
Webpage: http://web.cs.ucdavis.edu/~bai/ECS130/

Today's Agenda

Mathematics Review: Linear Algebra

Vector spaces over \mathbb{R}

Denote a (abstract) vector by \vec{v}. A vector space

$$
\mathcal{V}=\{\text { a collection of vectors } \vec{v}\}
$$

which satisfies

- All $\vec{v}, \vec{w} \in \mathcal{V}$ can be added and multiplied by $a \in \mathbb{R}$:

$$
\vec{v}+\vec{w} \in \mathcal{V}, \quad a \cdot \vec{v} \in \mathcal{V}
$$

- The operations ',+ ' ' must satisfy the axioms:

For arbitrary $\vec{u}, \vec{v}, \vec{w} \in \mathcal{V}$,

1. ' + ' commutativity and associativity: $\vec{v}+\vec{w}=\vec{w}+\vec{v}$,

$$
(\vec{u}+\vec{v})+\vec{w}=\vec{u}+(\vec{v}+\vec{w}) .
$$

2. Distributivity: $a(\vec{v}+\vec{w})=a \vec{v}+a \vec{w},(a+b) \vec{v}=a \vec{v}+b \vec{v}$, for all $a, b \in \mathbb{R}$.
3. ' + ' identity: there exists $\overrightarrow{0} \in \mathcal{V}$ with $\overrightarrow{0}+\vec{v}=\vec{v}$.
4. ' + ' inverse: for any $\vec{v} \in \mathcal{V}$, there exists $\vec{w} \in \mathcal{V}$ with $\vec{v}+\vec{w}=0$.
5. '.' identity: $1 \cdot \vec{v}=\vec{v}$.
6. ' '' compatibility: for all $a, b \in \mathbb{R},(a b) \cdot \vec{v}=a \cdot(b \cdot \vec{v})$.

Example

- Euclidean space:

$$
\mathbb{R}^{n}=\left\{\vec{a} \equiv\left(a_{1}, a_{2}, \ldots, a_{n}\right): a_{i} \in \mathbb{R}\right\}
$$

- Addition:

$$
\left(a_{1}, \ldots, a_{n}\right)+\left(b_{1}, \ldots, b_{n}\right)=\left(a_{1}+b_{1}, \ldots, a_{n}+b_{n}\right)
$$

- Multiplication:

$$
c \cdot\left(a_{1}, \ldots, a_{n}\right)=\left(c a_{1}, \ldots, c a_{n}\right)
$$

- Illustration in \mathbb{R}^{2} :

Example

- Polynomials:

$$
\mathbb{R}[x]=\left\{p(x)=\sum_{i} a_{i} x^{i}: a_{i} \in \mathbb{R}\right\}
$$

- Addition and multiplication in the usual way, e.g. $p(x)=a_{0}+a_{1} x+a_{2} x^{2}, q(x)=b_{1} x$:
- Addition:

$$
p(x)+q(x)=a_{0}+\left(a_{1}+b_{1}\right) x+a_{2} x^{2}
$$

- Multiplication:

$$
2 p(x)=2 a_{0}+2 a_{1} x+2 a_{2} x^{2}
$$

Span of vectors

- Start with $\vec{v}_{1}, \ldots, \vec{v}_{n} \in \mathcal{V}$, and $a_{i} \in \mathbb{R}$, we can define

$$
\vec{v} \equiv \sum_{i=1}^{n} a_{i} \vec{v}_{i}=a_{1} \vec{v}_{1}+a_{2} \vec{v}_{2}+\cdots+a_{n} \vec{v}_{n}
$$

Such a \vec{v} is called a linear combination of $\vec{v}_{1}, \ldots, \vec{v}_{n}$.

- For a set of vectors

$$
S=\left\{\vec{v}_{i}: i \in \mathcal{I}\right\}
$$

all its linear combinations define

$$
\operatorname{span} S \equiv\left\{\sum_{i} a_{i} \vec{v}_{i}: \vec{v}_{i} \in S \text { and } a_{i} \in \mathbb{R}\right\}
$$

Example in \mathbb{R}^{2}

- Observation from (c): adding a new vector does not always increase the span.

Linear dependence

- A set S of vectors is linearly dependent if it contains a vector

$$
\vec{v}=\sum_{i=1}^{k} c_{i} \vec{v}_{i}, \quad \text { for some } v_{i} \in S \backslash\{\vec{v}\} \text { and nonzero } c_{i} \in \mathbb{R}
$$

- Otherwise, S is called linearly independent.
- Two other equivalent defs. of linear dependence:
- There exists $\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\} \subset S \backslash\{\overrightarrow{0}\}$ such that

$$
\sum_{i=1}^{k} c_{i} \vec{v}_{i}=0 \quad \text { where } c_{i} \neq 0 \text { for all } i
$$

- There exists $\vec{v} \in S$ such that

$$
\operatorname{span} S=\operatorname{span}(S \backslash\{\vec{v}\})
$$

Dimension and basis

- Given a vector space \mathcal{V}, it is natural to build a finite set of linearly independent vectors:

$$
\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\} \subset \mathcal{V}
$$

- The max number n of such vectors defines the dimension of \mathcal{V}.
- Any set S of such vectors is a basis of \mathcal{V}, and satisfies

$$
\operatorname{span} S=\mathcal{V}
$$

Examples

- The standard basis for \mathbb{R}^{n} is given by the n vectors

$$
\vec{e}_{i}=(\underbrace{0, \ldots, 0}_{i-1}, 1, \underbrace{0, \ldots, 0}_{n-i}) \text { for } i=1, \ldots, n
$$

Since

- \vec{e}_{i} is not linear combination of the rest of vectors.
- For all $\vec{c} \in \mathbb{R}^{n}$, we have $\vec{c}=\sum_{i=1}^{n} c_{i} \vec{e}_{i}$.

Hence, the dimension of \mathbb{R}^{n} is n.

- A basis of polynomials $\mathbb{R}[x]$ is given by monomials

$$
\left\{1, x, x^{2}, \ldots\right\}
$$

The dimension of $\mathbb{R}[x]$ is ∞.

More about \mathbb{R}^{n}

- Dot product: for $\vec{a}=\left(a_{1}, \ldots, a_{n}\right), \vec{b}=\left(b_{1}, \ldots, b_{n}\right) \in \mathbb{R}^{n}$

$$
\vec{a} \cdot \vec{b}=\sum_{i=1}^{n} a_{i} b_{i}
$$

- Length of a vector

$$
\|a\|_{2}=\sqrt{a_{1}^{2}+\cdots+a_{n}^{2}}=\sqrt{\vec{a} \cdot \vec{a}}
$$

- Angle between two vectors

$$
\theta=\arccos \frac{\vec{a} \cdot \vec{b}}{\|a\|_{2}\|b\|_{2}}
$$

(*Motivating trigonometric in $\mathbb{R}^{3}: \vec{a} \cdot \vec{b}=\|a\|_{2}\|b\|_{2} \cos \theta$.)

- Vectors \vec{a}, \vec{b} are orthogonal if $\vec{a} \cdot \vec{b}=0=\cos 90^{\circ}$.

Linear function

- Given two vector spaces $\mathcal{V}, \mathcal{V}^{\prime}$, a function

$$
\mathcal{L}: \mathcal{V} \rightarrow \mathcal{V}^{\prime}
$$

is linear, if it preserves linearity.

- Namely, for all $\vec{v}_{1}, \vec{v}_{2} \in \mathcal{V}$ and $c \in \mathbb{R}$,
- $\mathcal{L}\left[\vec{v}_{1}+\vec{v}_{2}\right]=\mathcal{L}\left[\vec{v}_{1}\right]+\mathcal{L}\left[\vec{v}_{2}\right]$.
- $\mathcal{L}\left[c \vec{v}_{1}\right]=c \mathcal{L}\left[\vec{v}_{1}\right]$.
- \mathcal{L} is completely defined by its action on a basis of \mathcal{V} :

$$
\mathcal{L}[\vec{v}]=\sum_{i} c_{i} \mathcal{L}\left[\vec{v}_{i}\right]
$$

where $\vec{v}=\sum_{i} c_{i} \vec{v}_{i}$ and $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots\right\}$ is a basis of \mathcal{V}.

Examples

- Linear map in \mathbb{R}^{n} :

$$
\mathcal{L}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}
$$

defined by

$$
\mathcal{L}[(x, y)]=(3 x, 2 x+y,-y) .
$$

- Integration operator: linear map

$$
\mathcal{L}: \mathbb{R}[x] \rightarrow \mathbb{R}[x]
$$

defined by

$$
\mathcal{L}[p(x)]=\int_{0}^{1} p(x) d x
$$

Matrix

- Write vectors in \mathbb{R}^{m} in 'column forms', e.g.,

$$
\vec{v}_{1}=\left[\begin{array}{c}
v_{11} \\
\vdots \\
v_{m 1}
\end{array}\right], \vec{v}_{2}=\left[\begin{array}{c}
v_{12} \\
\vdots \\
v_{m 2}
\end{array}\right], \ldots, \vec{v}_{n}=\left[\begin{array}{c}
v_{1 n} \\
\vdots \\
v_{m n}
\end{array}\right]
$$

- Put n columns together we obtain an $m \times n$ matrix

$$
V \equiv\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
\vec{v}_{1} & \vec{v}_{2} & \ldots & \vec{v}_{n} \\
\mid & \mid & & \mid
\end{array}\right]=\left[\begin{array}{cccc}
v_{11} & v_{12} & \ldots & v_{1 n} \\
v_{21} & v_{22} & \ldots & v_{2 n} \\
\vdots & \vdots & \vdots & \vdots \\
v_{m 1} & v_{m 2} & \ldots & v_{m n}
\end{array}\right]
$$

- The space of all such matrices is denoted by $\mathbb{R}^{m \times n}$.

Unified notation: Scalars, Vectors, and Matrices

- A scalar $c \in \mathbb{R}$ is viewed as a 1×1 matrix

$$
c \in \mathbb{R}^{1 \times 1}
$$

- A column vector $\vec{v} \in \mathbb{R}^{n}$ is viewed as an $n \times 1$ matrix

$$
\vec{v} \in \mathbb{R}^{n \times 1}
$$

Matrix vector multiplication

- A matrix $V \in \mathbb{R}^{m \times n}$ can be multiplied by a vector $\vec{c} \in \mathbb{R}^{n}$:

$$
\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
\vec{v}_{1} & \vec{v}_{2} & \ldots & \vec{v}_{n} \\
\mid & \mid & & \mid
\end{array}\right]\left[\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right]=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\cdots+c_{n} \vec{v}_{n} .
$$

- Elementwisely, we have

$$
\left[\begin{array}{cccc}
v_{11} & v_{12} & \ldots & v_{1 n} \\
v_{21} & v_{22} & \ldots & v_{2 n} \\
\vdots & \vdots & \vdots & \vdots \\
v_{m 1} & v_{m 2} & \ldots & v_{m n}
\end{array}\right]\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right]=\left[\begin{array}{c}
c_{1} v_{11}+c_{2} v_{12}+\cdots+c_{n} v_{1 n} \\
c_{1} v_{21}+c_{2} v_{22}+\cdots+c_{n} v_{2 n} \\
\vdots \\
c_{1} v_{m 1}+c_{2} v_{m 2}+\cdots+c_{n} v_{m n}
\end{array}\right]
$$

Using matrix notation

- Matrix vector multiplication can be denoted by

$$
\underbrace{A}_{\mathbb{R}^{m \times n}} \underbrace{\vec{x}}_{\mathbb{R}^{n}}=\underbrace{\vec{b}}_{\mathbb{R}^{m}} .
$$

- $M \in \mathbb{R}^{m \times n}$ multiplied by another matrix in $\mathbb{R}^{n \times k}$ can be defined as

$$
M\left[\vec{c}_{1}, \ldots, \vec{c}_{k}\right] \equiv\left[M \vec{c}_{1}, \ldots, M \vec{c}_{k}\right]
$$

Example

- Identity matrix

$$
I_{n} \equiv\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
\vec{e}_{1} & \vec{e}_{2} & \ldots & \vec{e}_{n} \\
\mid & \mid & & \mid
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
0 & 1 & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \ldots & 0 & 1
\end{array}\right]
$$

It holds

$$
I_{n} \vec{c}=\vec{c} \text { for all } \vec{c} \in \mathbb{R}^{n}
$$

Example

- Linear map $\mathcal{L}[(x, y)]=(3 x, 2 x+y,-y)$ satisfies

$$
\mathcal{L}[(x, y)]=\underbrace{\left[\begin{array}{cc}
3 & 0 \\
2 & 1 \\
0 & -1
\end{array}\right]}_{\mathbb{R}^{3 \times 2}} \cdot \underbrace{\left[\begin{array}{c}
x \\
y
\end{array}\right]}_{\mathbb{R}^{2}}=\underbrace{\left[\begin{array}{c}
3 x \\
2 x+y \\
-y
\end{array}\right]}_{\mathbb{R}^{3}} .
$$

- All linear maps $\mathcal{L}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ can be expressed as

$$
\mathcal{L}[\vec{x}]=A \vec{x},
$$

for some matrix $A \in \mathbb{R}^{m \times n}$.

Matrix transpose

- Use $A_{i j}$ to denote the element of A at row i column j.
- The transpose of $A \in \mathbb{R}^{m \times n}$ is defined as $A^{T} \in \mathbb{R}^{n \times m}$

$$
\left(A^{T}\right)_{i j}=A_{j i}
$$

Example:

$$
A=\left[\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right] \quad \Rightarrow \quad A^{T}=\left[\begin{array}{lll}
1 & 3 & 5 \\
2 & 4 & 6
\end{array}\right]
$$

- Basic identities:

$$
\left(A^{T}\right)^{T}=A, \quad(A+B)^{T}=A^{T}+B^{T}, \quad(A B)^{T}=B^{T} A^{T}
$$

Examples: Matrix operations with transpose

- Dot product of $\vec{a}, \vec{b} \in \mathbb{R}^{n}$:

$$
\vec{a} \cdot \vec{b}=\sum_{i=1}^{n} a_{i} b_{i}=\left[\begin{array}{lll}
a_{1} & \ldots & a_{n}
\end{array}\right]\left[\begin{array}{c}
b_{1} \\
\vdots \\
b_{n}
\end{array}\right]=\vec{a}^{T} \vec{b} .
$$

- Residual norms of $\vec{r}=A \vec{x}-\vec{b}$:

$$
\begin{aligned}
\|A \vec{x}-\vec{b}\|_{2}^{2} & =(A \vec{x}-\vec{b})^{T}(A \vec{x}-\vec{b}) \\
& =\left(\vec{x}^{T} A^{T}-\vec{b}^{T}\right)(A \vec{x}-\vec{b}) \\
& =\vec{b}^{T} \vec{b}-\vec{b}^{T} A \vec{x}-\vec{x}^{T} A^{T} \vec{b}+\vec{x}^{T} A^{T} A \vec{x} \\
\text { (by } \left.\vec{b}^{T} A \vec{x}=\vec{x}^{T} A^{T} \vec{b}\right) & =\|\vec{b}\|_{2}^{2}-2 \vec{b}^{T} A \vec{x}+\|A \vec{x}\|_{2}^{2} .
\end{aligned}
$$

Computation aspects

- Storage of matrices in memory:

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right] \Rightarrow\left\{\begin{array}{ll|l|l|l|l|l|}
\text { Row-major: } & \begin{array}{ll|l|l|l|l|l|}
\hline 1 & 2 & 3 & 4 & 5 & 6 \\
\text { Column-major: } & \begin{array}{ll|l|l|l|}
\hline 1 & 3 & 5 & 2 & 4 \\
6
\end{array} \\
\hline
\end{array}
\end{array}\right.
$$

- Multiplication $\vec{b}=A \vec{x}$ for $A \in \mathbb{R}^{m \times n}$ and $\vec{x} \in \mathbb{R}^{n}$:

Access A row-by-row: Access column-by-column:

1: $\vec{b}=0$
2: for $i=1, \ldots, m$ do
3: \quad for $j=1, \ldots, n$ do
4: $\quad b_{i}=b_{i}+A_{i j} x_{j}$
5: end for
6: end for

1: $\vec{b}=0$
2: for $j=1, \ldots, n$ do
3: \quad for $i=1, \ldots, m$ do
4: $\quad b_{i}=b_{i}+A_{i j} x_{j}$
5: end for
6: end for

Linear systems of equations in matrix form

- Example: find (x, y, z) satisfying

$$
\begin{aligned}
3 x+2 y+5 z & =0 \\
-4 x+9 y-3 z & =-7 \\
2 x-3 y-3 z & =1 .
\end{aligned} \Rightarrow\left[\begin{array}{ccc}
3 & 2 & 5 \\
-4 & 9 & -3 \\
2 & -3 & -3
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
0 \\
-7 \\
1
\end{array}\right]
$$

- Given $A=\left[\vec{a}_{1}, \ldots, \vec{a}_{n}\right] \in \mathbb{R}^{m \times n}, \vec{b} \in \mathbb{R}^{m}$, find $\vec{x} \in \mathbb{R}^{n}$:

$$
A \vec{x}=\vec{b}
$$

- Solution exists if \vec{b} is in column space of A :

$$
\vec{b} \in \operatorname{col} A \equiv\left\{A \vec{x}: \vec{x} \in \mathbb{R}^{n}\right\}=\left\{\sum_{i=1}^{n} x_{i} \vec{a}_{i}: x_{i} \in \mathbb{R}\right\}
$$

The dimension of $\operatorname{col} A$ is defined as the rank of A.

The square case

- Let $A \in \mathbb{R}^{n \times n}$ be a square matrix, and suppose $A \vec{x}=\vec{b}$ has solution for all $\vec{b} \in \mathbb{R}^{n}$. We can solve

$$
\left.\begin{array}{c}
A \vec{x}_{i}=\vec{e}_{i}, \quad \text { for } i=1, \ldots, n . \\
A \underbrace{}_{A^{-1}} \begin{array}{l}
\Downarrow
\end{array} \\
A \underbrace{}_{\vec{x}_{1}} \vec{x}_{2} \\
\ldots
\end{array} \vec{x}_{n}\right] \quad=I_{n} .
$$

- The inverse satisfies (why?)

$$
A A^{-1}=A^{-1} A=I_{n} \quad \text { and } \quad\left(A^{-1}\right)^{-1}=A
$$

- Hence, for any \vec{b}, we can express the solution as

$$
\vec{x}=A^{-1} A \vec{x}=A^{-1} \vec{b}
$$

