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Vector spaces over R
Denote a (abstract) vector by v. A vector space

V = {a collection of vectors v}

which satisfies
» All v, w € V can be added and multiplied by a € R:

v+weyV, a-vey
» The operations ‘+,-" must satisfy the axioms:

For arbitrary @, v,w € V,

<L

1. ‘4’ commutativity and associativity: ¥+ @ = W +
(@ +T) + W = @+ (T + ).
Distributivity: a(7 + @) = a¥ + aw, (a + b)¥ = a¥ + b, for all a,b € R.

)

‘4’ identity: there exists 0€V with 0+ ¢ = 7.
‘+’ inverse: for any U € V, there exists @ € V with v+ @ = 0.

¢ identity: 1-¢ = 4.

S

‘.7 compatibility: for all a,b € R, (ab) -7 =a- (b- 7).



Example

» Fuclidean space:

R" = {d’z (ay,a9,...,a,): a; € R}.
» Addition:
(al,...,an)+(b1,...,bn):(a1+b1,...,an+bn)
» Multiplication:
c-(ay,...,an) = (cay,...,cap)

» Illustration in R?:
~ a + g A
‘ » 24
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Example

» Polynomials:
Rlz] = {p(m) = Zaixi: a; € R} :

» Addition and multiplication in the usual way,
e.g. p(x) = ag + a1x + ax2?, q(z) = bya:

» Addition:

p(x) +q(x) = ap+ (a1 + b1)z + agx?.

» Multiplication:

2p(x) = 2ag + 2a12 + 2a02°.



Span of vectors

» Start with o1,...,7, € V, and a; € R, we can define
n
U= E a;iU; = @10y + g0z + + - + Qy U,
i=1

Such a v is called a linear combination of vy, ..., v,.

» For a set of vectors
S ={v;:1 €1},
all its linear combinations define

span S = {Zaiﬁi: Uv; € S and a; GR}
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Example in R?

(a) 7,72 € R? (b) span {i), U2} (c) span {#), U, U3 }

» Observation from (c): adding a new vector does not
always increase the span.



Linear dependence

» A set S of vectors is linearly dependent if it contains a
vector

k
U= g c;U;, for some v; € S\{¥} and nonzero ¢; € R.
i—1

» Otherwise, S is called linearly independent.

» Two other equivalent defs. of linear dependence:
» There exists {7, ...,0} € S\{0} such that

k
Zcﬁi =0 where ¢; # 0 for all 1.
=1
» There exists v € S such that
span S = span(S\{v}).



Dimension and basis

» Given a vector space V, it is natural to build a finite
set of linearly independent vectors:

{171,...,1771} cV.

» The max number n of such vectors defines the
dimension of V.

» Any set S of such vectors is a basis of V, and satisfies

span S = V.



Examples

» The standard basis for R" is given by the n vectors
¢ =1(0,...,0,1,0,...,0) fori=1,...,n

Since

» ¢; is not linear combination of the rest of vectors.
» For all €€ R", we have ¢=>"" | ¢;€;.

Hence, the dimension of R" is n.

» A basis of polynomials R[z] is given by monomials
{1,2,2%,...}.

The dimension of R[x] is co.



More about R"

» Dot product: for @ = (ay, ... ,an),l;: (b,...,b,) € R"

n
i—1
» Length of a vector Z
Jalls = \Jad -+ +a2 = V@7
» Angle between two vectors
i b
lall2]|b]l2

6 = arccos

(*Motivating trigonometric in R3: @- b = ||al|2||b||2 cos§.)

» Vectors a, b are orthogonal if @-b =0 = cos90°.



Linear function

» Given two vector spaces V., V', a function
LV =YV
is linear, if it preserves linearity.

» Namely, for all v7,75 € V and ¢ € R,
» Lcth] = eL]vh].
» L is completely defined by its action on a basis of V:
L[] =) aLlw),

where v = ). ¢;0; and {v}, 05, ...} is a basis of V.



Examples
» Linear map in R":
L:R* - R3
defined by

Ll(z,y)] = (3z,2z + y, —y).

» Integration operator: linear map
L: Rlz] — R[z]

defined by



Matrix

» Write vectors in R™ in ‘column forms’, e.g.,

V11 V12 Uin
Umi Um2 Umn

» Put n columns together we obtain an m x n matrix

| | | V11 Vi2 ... Vin
(% v C (%
V=lo % ... G| =] 7 o
| |
Umi Um2 ... Umn

» The space of all such matrices is denoted by R™*",



Unified notation: Scalars, Vectors, and Matrices

» A scalar ¢ € R is viewed as a 1 x 1 matrix

ce R>!

» A column vector v € R™ is viewed as an n X 1 matrix

7 e R



Matrix vector multiplication
» A matrix V € R™*" can be multiplied by a vector ¢ € R™:

| ] |@

(% 172 N IC1771—|—CQZ72—|—"‘+Cn'l7n.

| 1 fen

» Elementwisely, we have

v11 V12 ... Uln C1 C1U11 + Cov12 + - - - + Cplip
V21 V22 ... VU2p C2 C1v21 + Cov22 + - - + CpU2,

Uml Um2 ... Umn Cn C1Um1 + C2Um2 + - -+ + CpUmn



Using matrix notation

» Matrix vector multiplication can be denoted by

—

A T =_b .
~N N N~
RmXn Rn7 Rm™m

» M € R™" multiplied by another matrix in R™** can
be defined as

M[El,...,gk] = [Mgl,,Mgk]



Example

» Identity matrix

1 0
| |
1
]nE 51 52 . 6_;1 = 0
| | :
0
It holds

I, = ¢ for all ¢ e R".



Example

» Linear map L[(z,y)] = (32,22 + y, —y) satisfies

Ll(z,y)] = % (1)1 m - 2x3iy

Y
- ~~ -y
R2 —_———
R3%2 R3

» All linear maps £: R” — R™ can be expressed as

for some matrix A € R™x",



Matrix transpose

» Use A;; to denote the element of A at row ¢ column j.
» The transpose of A € R™*" is defined as A7 € R™*™

(AT)i; = Aji.

Example:

1
A= |3
5

SN
4
s
S
|

» Basic identities:

(A=A, (A+B)"=A"+B", (AB)" =B"A".



Examples: Matrix operations with transpose

» Dot product of a, b€ R™:

» Residual norms of 7 = A% — b:

|AZ — B3 = (AZ — b)" (AT — 1)
= (@ AT — b") (AT — D)
= bTh— 0T AT — #TATh + 7T AT AT
(by b7 Az =27 ATE) = ||b]|2 — 207 AZ + || AZ|2.



Computation aspects

» Storage of matrices in memory:

Row-major: 112134156

ot W =
O = DO
4

Column-major: ’1‘3‘5‘2‘4‘6‘

» Multiplication b= A7 for A € R™" and 7 € R™:

Access A row-by-row: Access column-by-column:
1: 5: 0 1: g: 0
2: fori=1,...,mdo 2: for j=1,....,ndo
33 forj=1,...,ndo 3: fori=1,...,mdo
4: bz = bz + Al-jxj 4: bz = bl + Aijxj
5:  end for 5. end for
6: end for 6: end for




Linear systems of equations in matrix form

» Example: find (z,y, 2) satisfying

3r+2y+52=0 3 92 5 T 0
—dx+9y—-32=-7T = -4 9 =3 |yl =1-7
2¢ — 3y — 32 = 1. 2 =3 3] |= 1

» Given A = [dy, ..., d,] € R™" b e R™, find ¥ € R™:
A7 =1D.
» Solution exists if b is in column space of A:

becolA= {AZ: Z e R"} = {Z:cﬁi: x; € R}.

i=1

The dimension of col A is defined as the rank of A.



The square case

» Let A € R™™" be a square matrix, and suppose AZ = b
has solution for all b € R". We can solve

Ax; =¢€;, fori=1,...,n.
)

Al#y & ... @)=,
A-1

» The inverse satisfies (why?)

AA Y= A7A=1, and (AH)'=A

» Hence, for any b, we can express the solution as

Z=A"1A7 = A'D.
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