
Unconstrained Optimization

I Optimization problem

Given f : Rn −→ R
find x∗ ∈ Rn, such that x∗ = argmin

x
f(x)

I Global minimum and local minimum

I Optimality

I Necessary condition:
∇f(x∗) = 0

I Sufficient condition:

Hf (x∗) = ∇2f(x∗) is positive definite



Newton’s method

I Taylor series approximation of f at k-th iterate xk:

f(x) ≈ f(xk) +∇f(xk)T (x− xk) +
1

2
(x− xk)THf (xk)(x− xk)

I Differentiating with respect to x and setting the result equal to zero
yields the (k + 1)-th iterate, namely Newton’s method:

xk+1 = xk − [Hf (xk)]
−1∇f(xk).

I Newton’s method converges quadratically when x0 is near a minimum.



Gradient descent optimization

I Directional derivative of f at x in the direction u:

Duf(x) = lim
h→0

1

h
[f(x+ hu)− f(x)] = uT∇f(x).

Duf(x) measures the change in the value of f relative to the change
in the variable in the direction of u.

I To min f(x), we would like to find the direction u in which f
decreases the fastest.

I Using the directional derivative,

min
u
uT∇f(x) = min

u
‖u‖2‖∇f(x)‖2 cos θ

= −‖∇f(x)‖22

when
u = −∇f(x).

I u = −∇f(x) is call the steepest descent direction.



Gradient descent optimization

I The steepest descent algorithm:

xk+1 = xk − τ · ∇f(xk),

where τ is called stepsize or “learning rate”

I How to pick τ?

1. τ = argminαf(xk − α · ∇f(xk)) (line search)

2. τ = small constant

3. evaluate f(x− τ∇f(x)) for several different values of τ and choose
the one that results in the smallest objective function value.



Example: solving the least squares by gradient-descent

I Let A ∈ Rm×n and b = (bi) ∈ Rm

I The least squares problem, also known as linear regression:

min
x
f(x) = min

x

1

2
‖Ax− b‖22

= min
x

1

2

m∑
i=1

f2i (x)

where
fi(x) = A(i, :)Tx− bi

I Gradient: ∇f(x) = ATAx−AT b

I The method of gradient descent:

I set the stepsize τ and tolerance δ to small positive numbers.
I while ‖ATAx−AT b‖2 > δ do

x← x− τ · (ATAx−AT b)



Solving LS by gradient-descent

MATLAB demo code: lsbygd.m

...

r = A’*(A*x - b);

xp = x - tau*r;

res(k) = norm(r);

if res(k) <= tol, ... end

...

x = xp;

...



Connection with root finding

Solving nonlinear system of equations:

f1(x1, x2, . . . , xn) = 0

f2(x1, x2, . . . , xn) = 0

...

fn(x1, x2, . . . , xn) = 0

is equivalent to solve the optimization problem

min
x
g(x) = g(x1, x2, . . . , xn) =

n∑
i=1

(fi(x1, x2, . . . , xn))
2


