Unconstrained Optimization

- Optimization problem

$$
\begin{aligned}
& \text { Given } f: \mathbb{R}^{n} \longrightarrow \mathbb{R} \\
& \text { find } x_{*} \in \mathbb{R}^{n} \text {, such that } x_{*}=\underset{x}{\operatorname{argmin}} f(x)
\end{aligned}
$$

- Global minimum and local minimum
- Optimality
- Necessary condition:

$$
\nabla f\left(x_{*}\right)=0
$$

- Sufficient condition:

$$
H_{f}\left(x_{*}\right)=\nabla^{2} f\left(x_{*}\right) \text { is positive definite }
$$

Newton's method

- Taylor series approximation of f at k-th iterate x_{k} :

$$
f(x) \approx f\left(x_{k}\right)+\nabla f\left(x_{k}\right)^{T}\left(x-x_{k}\right)+\frac{1}{2}\left(x-x_{k}\right)^{T} H_{f}\left(x_{k}\right)\left(x-x_{k}\right)
$$

- Differentiating with respect to x and setting the result equal to zero yields the $(k+1)$-th iterate, namely Newton's method:

$$
x_{k+1}=x_{k}-\left[H_{f}\left(x_{k}\right)\right]^{-1} \nabla f\left(x_{k}\right) .
$$

- Newton's method converges quadratically when x_{0} is near a minimum.

Gradient descent optimization

- Directional derivative of f at x in the direction u :

$$
\mathcal{D}_{u} f(x)=\lim _{h \rightarrow 0} \frac{1}{h}[f(x+h u)-f(x)]=u^{T} \nabla f(x) .
$$

$\mathcal{D}_{u} f(x)$ measures the change in the value of f relative to the change in the variable in the direction of u.

- To min $f(x)$, we would like to find the direction u in which f decreases the fastest.
- Using the directional derivative,

$$
\begin{aligned}
\min _{u} u^{T} \nabla f(x) & =\min _{u}\|u\|_{2}\|\nabla f(x)\|_{2} \cos \theta \\
& =-\|\nabla f(x)\|_{2}^{2}
\end{aligned}
$$

when

$$
u=-\nabla f(x) .
$$

- $u=-\nabla f(x)$ is call the steepest descent direction.

Gradient descent optimization

- The steepest descent algorithm:

$$
x_{k+1}=x_{k}-\tau \cdot \nabla f\left(x_{k}\right)
$$

where τ is called stepsize or "learning rate"

- How to pick τ ?

1. $\tau=\operatorname{argmin}_{\alpha} f\left(x_{k}-\alpha \cdot \nabla f\left(x_{k}\right)\right)$ (line search)
2. $\tau=$ small constant
3. evaluate $f(x-\tau \nabla f(x))$ for several different values of τ and choose the one that results in the smallest objective function value.

Example: solving the least squares by gradient-descent

- Let $A \in \mathbb{R}^{m \times n}$ and $b=\left(b_{i}\right) \in \mathbb{R}^{m}$
- The least squares problem, also known as linear regression:

$$
\begin{aligned}
\min _{x} f(x) & =\min _{x} \frac{1}{2}\|A x-b\|_{2}^{2} \\
& =\min _{x} \frac{1}{2} \sum_{i=1}^{m} f_{i}^{2}(x)
\end{aligned}
$$

where

$$
f_{i}(x)=A(i,:)^{T} x-b_{i}
$$

- Gradient: $\nabla f(x)=A^{T} A x-A^{T} b$
- The method of gradient descent:
- set the stepsize τ and tolerance δ to small positive numbers.
- while $\left\|A^{T} A x-A^{T} b\right\|_{2}>\delta$ do

$$
x \leftarrow x-\tau \cdot\left(A^{T} A x-A^{T} b\right)
$$

Solving LS by gradient-descent

MATLAB demo code: 1sbygd.m

```
r = A'*(A*x - b);
xp = x - tau*r;
res(k) = norm(r);
if res(k) <= tol, ... end
x = xp;
...
```


Connection with root finding

Solving nonlinear system of equations:

$$
\begin{array}{r}
f_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=0 \\
f_{2}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=0 \\
\vdots \\
f_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=0
\end{array}
$$

is equivalent to solve the optimization problem

$$
\min _{x} g(x)=g\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{i=1}^{n}\left(f_{i}\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right)^{2}
$$

