1. Gaussian elimination = LU factorization

\[A = LU. \]

where \(L \) is a unit lower triangular matrix and \(U \) a upper triangular matrix.

2. Not all matrices have the LU factorization. For example,

\[A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 2 & 1 \\ 2 & 3 & 1 \end{bmatrix} \neq LU. \]

3. A permutation matrix \(P \) is an identity matrix with permuted rows.

Let \(P, P_1, P_2 \) be \(n \times n \) permutation matrices, and \(X \) be an \(n \times n \) matrix. Then

- \(P^T P = I \), i.e., \(P^{-1} = P^T \).
- \(\det(P) = \pm 1 \).
- \(P_1P_2 \) is also a permutation matrix.
- \(PX \) is the same as \(X \) with its rows permuted.
- \(XP \) is the same as \(X \) with its columns permuted.
- \(P_1XP_2 \) reorders both rows and columns of \(X \).

4. The need of pivoting, mathematically

The LU factorization can fail on nonsingular matrices, see the above example. But by exchanging the first and third rows, we get

\[
PA = \begin{bmatrix} 2 & 3 & 1 \\ 0 & 2 & 1 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1/2 & 1 \end{bmatrix} \begin{bmatrix} 2 & 3 & 1 \\ 0 & 1 & 0 \\ 0 & 1/2 & 1 \end{bmatrix} = LU.
\]

5. The above simple observation is the basis for LU factorization with pivoting.

Theorem. If \(A \) is nonsingular, then there exist permutations \(P \), a unit lower triangular matrix \(L \), and a nonsingular upper triangular matrix \(U \) such that

\[PA = LU. \]

6. Function `lutx.m`

7. Solving \(Ax = b \) using the LU factorization

1. Factorize \(A \) into \(PA = LU \)
2. Permute the entries of \(b \): \(b := Pb \).
3. Solve \(L(Ux) = b \) for \(Ux \) by forward substitution:
 \[Ux = L^{-1}b. \]
4. Solve \(Ux = L^{-1}b \) for \(x \) by back substitution:
 \[x = U^{-1}(L^{-1}b). \]
Let us apply LU factorization without pivoting to

\[A = \begin{bmatrix} .0001 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 10^{-4} & 1 \\ 1 & 1 \end{bmatrix} = LU = \begin{bmatrix} 1 \\ l_{21} & 1 \end{bmatrix} \begin{bmatrix} u_{11} & u_{12} \\ u_{22} \end{bmatrix} \]

in three decimal-digit floating point arithmetic. We obtain

\[L = \begin{bmatrix} 1 \\ fl(1/10^{-4}) & 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 10^4 1 \end{bmatrix}, \]

\[U = \begin{bmatrix} 10^{-4} \\ fl(1 - 10^4 \cdot 1) \end{bmatrix} = \begin{bmatrix} 10^{-4} & 1 \\ 1 & -10^4 \end{bmatrix}, \]

so

\[LU = \begin{bmatrix} 1 & 0 \\ 10^4 & 1 \end{bmatrix} \begin{bmatrix} 10^{-4} & 1 \\ -10^4 & 1 \end{bmatrix} = \begin{bmatrix} 10^{-4} & 1 \\ 1 & 0 \end{bmatrix} \neq A, \]

where the original \(a_{22} \) has been entirely “lost” from the computation by subtracting \(10^4 \) from it. In fact, we would have gotten the same LU factors whether \(a_{22} \) had been \(1, 0, -2 \), or any number such that \(fl(a_{22} - 10^4) = -10^4 \). Since the algorithm proceeds to work only with \(L \) and \(U \), it will get the same answer for all these different \(a_{22} \), which correspond to completely different \(A \) and so completely different \(x = A^{-1}b \); there is no way to guarantee an accurate answer. This is called numerical instability. \(L \) and \(U \) are not the exact factors of a matrix close to \(A \).

Let us see what happens when we go on to solve \(Ax = [1, 2]^T \) for \(x \) using this LU factorization. The correct answer is \(x \approx [1, 1]^T \). Instead we get the following. Solving

\[Ly = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \Rightarrow y_1 = fl(1/1) = 1 \text{ and } y_2 = fl(2 - 10^4 \cdot 1) = -10^4. \]

Note that the value 2 has been “lost” by subtracting \(10^4 \) from it. Solving

\[Ux = y = \begin{bmatrix} 1 \\ -10^4 \end{bmatrix} \Rightarrow \hat{x}_2 = fl((-10^4)/(-10^4)) = 1 \text{ and } \hat{x}_1 = fl((1 - 1)/10^{-4}) = 0, \]

a completely erroneous solution.

On the other hand, the LU factorization with partial pivoting would have reversed the order of the two equations before proceeding. You can confirm that we get

\[PA = LU, \]

where

\[P = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad L = \begin{bmatrix} 1 \\ fl(.0001/1) \end{bmatrix} = \begin{bmatrix} 1 \\ .0001 \end{bmatrix}, \]

and

\[U = \begin{bmatrix} 1 \\ fl(1 - .0001 \cdot 1) \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}. \]

The computed LU approximates \(A \) very accurately. As a result, the computed solution \(x \) is also perfect!