1. Let $A \in \mathbb{C}^{n \times n}$.

(a) A scalar λ is an eigenvalue of an $n \times n$ A and a nonzero vector $x \in \mathbb{C}^n$ is a corresponding (right) eigenvector if

$$Ax = \lambda x.$$

(b) A nonzero vector y is called a left eigenvector if

$$y^H A = \lambda y^H.$$

(c) The set of all eigenvalues of A, denoted as $\lambda(A)$, is called the spectrum of A.

(d) The characteristic polynomial of A is a polynomial of degree n, and defined as

$$p(\lambda) = \det(\lambda I - A).$$

2. The following is a list of properties straightforwardly from above definitions:

(a) λ is A’s eigenvalue $\iff \lambda I - A$ is singular $\iff \det(\lambda I - A) = 0 \iff p(\lambda) = 0$.

(b) There is at least one eigenvector x associated with A’s eigenvalue λ.

(c) Suppose A is real. λ is A’s eigenvalue \iff conjugate $\bar{\lambda}$ is also A’s eigenvalue.

(d) A is singular $\iff 0$ is A’s eigenvalue.

(e) If A is upper (or lower) triangular, then its eigenvalues consist of its diagonal entries.

(Question: what if A is a block upper (or lower) triangular matrix ?).

Let A be of order n. Then there is an $n \times n$ unitary matrix U (i.e., $U^H U = I$) such that

$$A = U T U^H,$$

where T is upper triangular and the diagonal elements of T are the eigenvalues of A.

4. When A is Hermitian, i.e., $A^H = A$, then by Schur decomposition, we know that there exist an unitary matrix U such that

$$A = U \Lambda U^H,$$

where $\Lambda = \text{diag}(\lambda_1, \lambda_2, \ldots, \lambda_n)$ and all eigenvalues λ_i are real.

5. $A \in \mathbb{C}^{n \times n}$ is simple if it has n linearly independent eigenvectors; otherwise it is defective.

Examples.

(a) I and any diagonal matrices is simple. e_1, e_2, \ldots, e_n are n linearly independent eigenvectors.

(b) $A = \begin{pmatrix} 1 & 2 \\ 4 & 3 \end{pmatrix}$ is simple. It has two different eigenvalues -1 and 5, it has 2 linearly independent eigenvectors: $\frac{1}{\sqrt{2}} \begin{pmatrix} -1 \\ 1 \end{pmatrix}$ and $\frac{1}{\sqrt{5}} \begin{pmatrix} 1 \\ 2 \end{pmatrix}$.
(c) If $A \in \mathbb{C}^{n \times n}$ has n different eigenvalues, then A is simple.

(d) $A = \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}$ is defective. It has two repeated eigenvalues 2, but only one eigenvector $e_1 = (1, 0)^T$.

6. Eigenvalue decomposition

$A \in \mathbb{C}^{n \times n}$ is simple if and only if there exists a nonsingular matrix $X \in \mathbb{C}^{n \times n}$ such that

$$A = X\Lambda X^{-1},$$

where $\Lambda = \text{diag}(\lambda_1, \lambda_2, \ldots, \lambda_n)$. In this case, λ_i are eigenvalues, and the columns of X are eigenvectors, and A is called diagonalizable.

7. An invariant subspace of A is a subspace \mathcal{V} of \mathbb{R}^n, with the property that

$$v \in \mathcal{V} \text{ implies that } Av \in \mathcal{V}.$$

We also write this as $A\mathcal{V} \subseteq \mathcal{V}$.

Examples.

(a) The simplest, one-dimensional invariant subspace is the set $\text{span}(x)$ of all scalar multiples of an eigenvector x.

(b) Let x_1, x_2, \ldots, x_m be any set of independent eigenvectors with eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_m$. Then $\mathcal{X} = \text{span}\{x_1, x_2, \ldots, x_m\}$ is an invariant subspace.

PROPOSITION. Let A be n-by-n, let $V = [v_1, v_2, \ldots, v_m]$ be any n-by-m matrix with linearly independent columns, and let $\mathcal{V} = \text{span}(V)$, the m-dimensional space spanned by the columns of V. Then \mathcal{V} is an invariant subspace if and only if there is an m-by-m matrix B such that

$$AV = VB.$$

In this case, the m eigenvalues of B are also eigenvalues of A.

8. Two $n \times n$ matrices A and B are similar if there is an $n \times n$ non-singular matrix P such that $B = P^{-1}AP$. We also say A is similar to B, and likewise B is similar to A; P is a similarity transformation. A is unitarily similar to B if P is unitary.

PROPOSITION. Suppose that A and B are similar: $B = P^{-1}AP$.

(a) A and B have the same eigenvalues. In fact $p_A(\lambda) \equiv p_B(\lambda)$.

(b) $Ax = \lambda x \Rightarrow B(P^{-1}x) = \lambda(P^{-1}x)$.

(c) $Bw = \lambda w \Rightarrow A(Pw) = \lambda(Pw)$.

2