1. **Singular Value Decomposition (SVD)**

 Let A be an m-by-n matrix with $m \geq n$. Then we can write

 $$A = U \Sigma V^T,$$

 where U is m-by-n orthogonal matrix ($U^T U = I_m$) and V is n-by-n orthogonal matrix ($V^T V = I_n$), and $\Sigma = \text{diag}(\sigma_1, \sigma_2, \ldots, \sigma_n)$, where $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_n \geq 0$.

 $\sigma_1, \sigma_2, \ldots, \sigma_n$ are called *singular values*. The columns $\{u_i\}$ of U are called *left singular vectors* of A. The columns $\{v_i\}$ of V are called *right singular vectors*.

2. **Connection/difference between eigenvalues and singular values.**

 (a) eigenvalues of $A^T A$ are σ_i^2, $i = 1, 2, \ldots, n$. The corresponding eigenvectors are the right singular vectors v_i, $i = 1, 2, \ldots, n$.

 (b) eigenvalues of AA^T are σ_i^2, $i = 1, 2, \ldots, n$ and $m - n$ zeros. The left singular vectors u_i, $i = 1, 2, \ldots, n$ are corresponding eigenvectors for the eigenvalues σ_i^2. One can take any $m - n$ other orthogonal vectors that are orthogonal to u_1, u_2, \ldots, u_n as the eigenvectors for the zero eigenvalues.

3. Suppose that A has full column rank, then the pseudo-inverse can also be written as

 $$A^+ \equiv (A^T A)^{-1} A^T = V \Sigma^{-1} U^T.$$

4. Suppose that

 $$\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > \sigma_{r+1} = \cdots = \sigma_n = 0,$$

 Then

 (a) the rank of A is r,
 (b) the range of A is spanned by $[u_1, u_2, \ldots, u_r]$.
 (c) the nullspace of A is spanned by $[v_{r+1}, v_{r+2}, \ldots, v_n]$.

5. $\|A\|_2 = \sigma_1 = \sqrt{\lambda_{\text{max}}(A^T A)}$.

6. Assume $\text{rank}(A) = r$, then the SVD of A can be rewritten as

 $$A = E_1 + E_2 + \cdots + E_r$$

 where E_k for $i = 1, 2, \ldots, r$ is a rank-one matrix of the form

 $$E_k = \sigma_k u_k v_k^T,$$

 and is referred to as the k-th *component* matrix.

1 If $m < n$, the SVD can be defined by considering A^T.
2 If $m < n$, then $A^+ = A^T (AA^T)^{-1}$.
Component matrices are orthogonal to each other, i.e.,

\[E_j E_k^T = 0, \quad j \neq k. \]

Furthermore, since \(\|E_k\|_2 = \sigma_k \), we know that

\[\|E_1\|_2 \geq \|E_2\|_2 \geq \cdots \geq \|E_r\|_2. \]

It means that the contribution each \(E_k \) makes to reproduce \(A \) is determined by the size of the singular value \(\sigma_k \).

7. Optimal rank-\(k \) approximation:

\[
\min_{B : m \times n, \ \text{rank}(B) = k} \|A - B\|_2 = \|A - A_k\|_2 = \sigma_{k+1},
\]

where \(A_k = E_1 + E_2 + \cdots + E_k \).

Note that \(A_k \) can be rewritten as

\[A_k = U_k \Sigma_k V_k^T, \]

where \(\Sigma_k = \text{diag}(\sigma_1, \sigma_2, \ldots, \sigma_k) \), \(U_k \) and \(V_k \) are the first \(k \) columns of \(U \) and \(V \), respectively.

8. The problem of applying the leading \(k \) components of \(A \) to analyze the data in the matrix \(A \) is called **Principal Component Analysis (PCA)**.

Note that \(A_k \) can be represented by \(mk + k + nk = (m + n + 1)k \) elements, in contrast, \(A \) is represented by \(mn \) elements. Therefore, we have

\[
\text{compression ratio} = \frac{(m + n + 1)k}{mn}
\]

Matlab script: `svd4image.m`