ECS231: Spectral Partitioning

Based on Berkeley's CS267 lecture on graph partition
Definition of graph partitioning

• Given a graph $G = (N, E, W_N, W_E)$
 - $N =$ nodes (or vertices),
 - $E =$ edges
 - $W_N =$ node weights
 - $W_E =$ edge weights

• Ex: $N =$ {tasks}, $W_N =$ {task costs},
 $E =$ {edge (j,k): task j sends $W_E(j,k)$ words to task k}

• Graph partitioning:

 choose a partition $N = N_1 \cup N_2 \cup \ldots \cup N_P$ such that
 - The sum of the node weights in each N_j is “about the same”
 - The sum of all edge weights of edges connecting all different pairs N_j and N_k is minimized

• Ex: balance the work load, while minimizing communication

• Special case of $N = N_1 \cup N_2$: graph bisection
Applications

- Telephone network design
 - Original application, algorithm due to Kernighan
- VLSI layout
 - N = \{units on chip\}, E = \{wires\}, W_{E}(j,k) = wire length
- Data mining and clustering
- Physical mapping of DNA
- ...
Load balancing while minimizing communication in HPC:

- **Sparse matrix-vector multiplication**
 - $N = \{1, 2, \ldots, n\}$,
 - (j, k) in E if $A(j, k)$ nonzero,
 - $W_E(j, k) = 1$
 - $W_N(j) = \#$ nonzeros in row j

- **Sparse Gaussian elimination**
 - Used to reorder rows and columns to increase parallelism, decrease “fill-ins”
Sparse matrix partition:

Partitioning a Sparse Symmetric Matrix

\[
A = \begin{bmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\bullet & \bullet \\
\bullet & \bullet \\
\bullet & \bullet \\
\bullet & \bullet \\
\bullet & \bullet \\
\bullet & \bullet \\
\bullet & \bullet \\
\end{bmatrix}
\]
Cost of graph partitioning

- Many possible partitionings to search:

- \(\binom{n}{n/2} \approx \sqrt{\frac{2n}{\pi}} \times 2^n\) bisection possibilities
- Choosing optimal partitioning is NP-complete
 - Only known exact algorithms have cost = exponential(n)
- Need good heuristics
First heuristic: repeated graph bisection

- To partition N into 2^k parts
 - bisect graph recursively k times
- Henceforth discuss mostly graph bisection
Coordinate-free partitioning

• Popular techniques for partitioning
 • Breadth-First Search – simple, but not great partition
 • Kernighan-Lin – good corrector given reasonable partition
 • Spectral Method – good partitions, but may be slow

• Multilevel methods
 • Used to speed up problems that are too large/slow
 • Coarsen, partition, expand, improve
 • Can be used with K-L and Spectral methods and others

• Speed/quality
 • For load balancing of grids, multi-level K-L probably best
 • For other partitioning problems (vision, clustering, etc.), spectral may be better
 • Good software available: meshpart, metis, chaco, …
Coordinate-free: spectral bisection

• Definitions
• Basic spectral bisection algorithm
• Fiedler’s theorem
• Implementation via the Lanczos algorithm

Reference: Fiedler (1970s): basic theory,
Pothen, Simon and Liou (1990): one of first "modern” treatments
Basic definitions

- **Definition:** The incidence matrix $\text{In}(G)$ of a graph $G(N,E)$ is an $|N|$ by $|E|$ matrix, with one row for each node and one column for each edge. If edge $e=(i,j)$ then column e of $\text{In}(G)$ is zero except for the i-th and j-th entries, which are +1 and -1, respectively.

- Slightly ambiguous definition because multiplying column e of $\text{In}(G)$ by -1 still satisfies the definition, but this won’t matter...

- **Definition:** The Laplacian matrix $\text{L}(G)$ of a graph $G(N,E)$ is an $|N|$ by $|N|$ symmetric matrix, with one row and column for each node. It is defined by
 - $\text{L}(G) (i,i) = \text{degree of node } i \text{ (number of incident edges)}$
 - $\text{L}(G) (i,j) = -1 \text{ if } i \neq j \text{ and there is an edge } (i,j)$
 - $\text{L}(G) (i,j) = 0 \text{ otherwise}$
Example of $\text{In}(G)$ and $\text{L}(G)$

Incidence and Laplacian Matrices

Graph G

Incidence Matrix $\text{In}(G)$

$$
\begin{bmatrix}
1 & 2 & 3 & 4 \\
1 & -1 & & \\
2 & 1 & -1 & \\
3 & & 1 & -1 \\
4 & & & 1 & -1 \\
5 & & & & 1 \\
\end{bmatrix}
$$

Laplacian Matrix $\text{L}(G)$

$$
\begin{bmatrix}
1 & 1 & -1 & & & & & & & & & \\
1 & -1 & 2 & -1 & & & & & & & & \\
1 & -1 & 2 & -1 & & & & & & & & \\
1 & & & 1 & & & & & & & & \\
1 & & & & 1 & & & & & & & \\
1 & & & & & 1 & & & & & & \\
\end{bmatrix}
$$

Nodes numbered in black

Edges numbered in blue
Properties of incidence and Laplacian matrices

1. \(\text{In}(G) \times (\text{In}(G))^T = L(G) \). This is independent of the signs chosen for each column of \(\text{In}(G) \).

2. \(L(G) \) is symmetric. (This means the eigenvalues of \(L(G) \) are real and its eigenvectors are real and orthogonal.)

3. Let \(e = [1, \ldots, 1]^T \), i.e. the column vector of all ones. Then \(L(G) \times e = 0 \).

4. Suppose \(L(G) \times v = \lambda \times v \), so that \(v \) is an eigenvector and \(\lambda \) an eigenvalue of \(L(G) \). Then

\[
\lambda = \frac{\| \text{In}(G)^T \times v \|^2}{\| v \|^2} = \sum \{ (v(i)-v(j))^2 \text{ for all edges } e=(i,j) \} / \sum v(i)^2
\]

5. The eigenvalues of \(L(G) \) are nonnegative:

\[
0 = \lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_n
\]

6. The number of connected components of \(G \) is equal to the number of \(\lambda_i \) equal to 0. In particular, \(\lambda_2 \neq 0 \) if and only if \(G \) is connected.

Definition: \(\lambda_2(L(G)) \) is the algebraic connectivity of \(G \)
Basic spectral bisection algorithm

• Compute eigenvector v_2 corresponding to $\lambda_2(L(G))$
• For each node j of G
 • if $v_2(j) < 0$
 put node j in partition $N-$
 • else
 put node j in partition $N+$
Spectral bisection algorithm (cont’d)

Why does this make sense?

Fiedler’s theorem:

1. Let G be connected, and N^{-} and N^{+} defined as above. Then N^{-} is connected. If no $v_2(j) = 0$, then N^{+} is also connected.

2. Let $G_1(N,E_1)$ be a subgraph of $G(N,E)$, so that G_1 is “less connected” than G. Then $\lambda_2(L(G_1)) \leq \lambda_2(L(G))$, i.e. the algebraic connectivity of G_1 is less than or equal to the algebraic connectivity of G.
Computing v_2 and λ_2 of $L(G)$ using Lanczos

- Given any n-by-n symmetric matrix A (such as $L(G)$). Lanczos computes a k-by-k “approximation” T by doing k matrix-vector products, $k << n$

Choose an arbitrary starting vector r

$b(0) = ||r||$

$j = 0$

repeat

$j = j + 1$

$q(j) = r / b(j-1)$ … scale a vector

$r = A \cdot q(j)$ … matrix vector multiplication, the most expensive step

$r = r - b(j-1) \cdot v(j-1)$ … “saxpy”, or scalar*vector + vector

$a(j) = v(j)^T \cdot r$ … dot product

$r = r - a(j) \cdot v(j)$ … “saxpy”

$b(j) = ||r||$ … compute vector norm

until convergence … details omitted

$T = \begin{bmatrix} a(1) & b(1) \\ b(1) & a(2) & b(2) \\ b(2) & a(3) & b(3) \\ \vdots & \vdots & \vdots \\ b(k-2) & a(k-1) & b(k-1) \\ b(k-1) & a(k) \end{bmatrix}$

- Approximate A’s eigenvalues/vectors using T’s
Summary

• Laplacian matrix represents graph connectivity
• Second eigenvector gives a graph bisection
 • Roughly equal “weights” in two parts
 • Weak connection in the graph will be separator
• Implementation via the Lanczos algorithm
First references

Meshpart toolbox

- Meshpart: Matlab mesh partitioning and graph separator toolbox by J. Gilbert and S. Teng
- http://www.cerfacs.fr/algor/Softs/MESHPART

Demo:
- Load Graphpartdata.mat
- Gplot(Tapir,Txy)
- [part1,part2]=specpart(Tapir,Txy);
- Main files: specpart.m, fiedler.m