1. Consider the function \(f(x) = \log x \). The condition number is \(\kappa_f(x) = \left| \frac{1}{\log x} \right| \), which is large for \(x \approx 1 \). Numerically demonstrate that a small relative change in \(x \) can produce a much larger relative change in \(\log x \) for \(x \approx 1 \). Use the rule of thumb:

\[
\text{(relative forward error)} \lesssim \text{(condition number)} \times \text{(relative backward error)}.
\]

to explain your numerical results.

2. In this problem, we explore the conditioning of root-finding. Suppose \(f(x) \) and \(p(x) \) are smooth functions of \(x \in \mathbb{R} \), and \(x_* \) is a root of \(f(x) \), i.e., \(f(x_*) = 0 \).

(a) Due to error in evaluating \(f(x) \), we might compute roots of a perturbation \(f(x) + \varepsilon p(x) \).

If \(f'(x_*) \neq 0 \), for small \(\varepsilon \) we can write a function \(x(\varepsilon) \) such that \(f(x(\varepsilon)) + \varepsilon p(x(\varepsilon)) = 0 \) with \(x(0) = x_* \). Assuming such a function \(x(\varepsilon) \) exists and is differentiable, show that

\[
\frac{dx}{d\varepsilon} \bigg|_{\varepsilon=0} = -\frac{p(x_*)}{f'(x_*)}
\]

(b) Consider Wilkinson’s polynomial

\[
f(x) = (x - 1)(x - 2) \cdots (x - 20).
\]

We could have expanded \(f(x) \) in the monomial basis as \(f(x) = a_0 + a_1 x + \cdots + a_{20} x^{20} \). If we express the coefficient \(a_{19} \) in accurately, we could use the model from (a) with \(p(x) = x^{19} \) to predict how much root-finding will suffer. Show that

\[
\frac{dx}{d\varepsilon} \bigg|_{\varepsilon=0,x_*=j} = -\prod_{k \neq j} \frac{j}{j-k}
\]

(c) Compare \(\frac{dx}{d\varepsilon} \) from (b) for \(x_* = 1 \) and \(x_* = 20 \). Which root is more stable to the perturbation?

3. The power series for \(\sin x \) is

\[
\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots
\]

Here is a Matlab function that uses this series to compute \(\sin x \).

```matlab
function s = powersin(x)
% POWERSIN(x) tries to compute sin(x) from a power series
s = 0;
t = x;
n = 1;
while s + t ~= s;
s = s + t;
t = -x.^2/((n+1)*(n+2)).*t;
n = n + 2;
end
```
(a) What cases the while loop to terminate?

(b) Answer each of the following questions for $x = \pi/2, 11\pi/2, 21\pi/2$ and $31\pi/2$.
 - How accurate is the computed results?
 - How many terms are required?
 - What is the largest term (i.e, the last t) in the series?

(c) What do you conclude about the use of floating point arithmetic and power series to evaluate functions?

4. The roots of the quadratic function $ax^2 + bx + c$ are given by

 $$x_* = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$$

(a) Prove the alternative formula

 $$x_* = \frac{-2c}{b \pm \sqrt{b^2 - 4ac}}.$$

(b) Propose a numerical stable algorithm for finding the roots.

(c) Compare/comment your computed results for the following set of data:

 1) $a = 1, b = -56, c = 1$
 2) $a = 1, b = -10^8, c = 1$

5. Consider the function

 $$f(x) = \frac{e^x - 1}{x},$$

 which arises in various applications. By L'Hopital’s rule, we know that

 $$\lim_{x \to 0} f(x) = 1.$$

(a) Compute the values of $f(x)$ for $x = 10^{-n}$, $n = 1, 2, \ldots, 16$. Do your results agree with theoretical expectations? Explain why.

(b) Perform the computation in part (a) again, this time using the mathematically equivalent formulation

 $$f(x) = \frac{e^x - 1}{\log(e^x)},$$

 (evaluated as indicated with no simplification). If this works any better, can you explain why?

6. Program the five algorithms discussed in the class for the matrix-matrix multiply $C = C + AB$, where A, B and C are $n \times n$ matrix. Time them for random matrices for a set of dimensions. Verify that they yield the same solution but takes different amount of time (and different rates of flops).