III.1 Re-design of Higher level Matrix Algorithms for Multicore and Heterogeneous Architectures

Based on the presentation at UC Berkeley, October 7, 2009
Background and motivation

Running time of an algorithm is the sum of three items:
1. \# flops \times \text{time-per-flop}
2. \# words moved/bandwidth (memory communication)
3. \# messages \times \text{latency} (network communication)

Hardware trend: exponentially growing gaps

- Time-per-flop \ll 1/\text{Memory BW} \ll \text{Memory Latency}

 improving 59%/year vs 23%/year vs 5.5%/year

- Time-per-flop \ll 1/\text{Network BW} \ll \text{Network Latency}

 improving 59%/year vs 26%/year vs 15%/year

Goal: re-design matrix algorithms to reduce communication and optimize the performance

Recent work by Dongarra, Demmel, et al, ...
Background and motivation – Experts’ benchmark

Matrix multiplication of MKL library on Intel Xeon EMT64:

matrix size and Gflops
Matrix multiplication of ESSL library on an IBM Power 6:

Matrix size and Gflops
PLASMA_DGETRF on Intel Xeon EMT64

Courtesey of Innovative Computing Laboratory at the University of Tennessee (J. Dongarra et al)
PLASMA_DGEQRF on Intel Xeon EMT64

matrix size and Gflops

Courtesy of Innovative Computing Laboratory at the University of Tennessee (J. Dongarra et al)
PLASMA_DGETRF on IBM Power 6:

matrix size and Gflops

Courtesy of Innovative Computing Laboratory at the University of Tennessee (J. Dongarra et al)
PLASMA_DGEQRF on IBM Power 6:

Innovative Computing Laboratory at the University of Tennessee (J. Dongarra et al)
Background and motivation – Poor man’s benchmark data

DGEMM, DGEQRF and DGEQP3 of MKL 10.2 on Intel Core™ i7 Quad 2.66GHz

![Graph](image)

Message: pivoting is expensive!
Background and motivation – Poor man’s benchmark data

PDGEMM, PDGEQRF and PDGEQPF (pivoted QR) of PBLAS and ScaLAPACK on Cray XT4 (Franklin of NERSC):

GFlop/s \((n = 12000) \)

<table>
<thead>
<tr>
<th>N. Proc.</th>
<th>PDGEMM</th>
<th>PDGEQRF</th>
<th>PDGEQPF</th>
</tr>
</thead>
<tbody>
<tr>
<td>2x2</td>
<td>18.55</td>
<td>13.40</td>
<td>1.25</td>
</tr>
<tr>
<td>4x4</td>
<td>67.51</td>
<td>48.23</td>
<td>4.89</td>
</tr>
<tr>
<td>6x6</td>
<td>153.39</td>
<td>106.86</td>
<td>10.38</td>
</tr>
<tr>
<td>8x8</td>
<td>265.40</td>
<td>184.52</td>
<td>17.93</td>
</tr>
<tr>
<td>12x12</td>
<td>626.06</td>
<td>365.80</td>
<td>36.76</td>
</tr>
<tr>
<td>16x16</td>
<td>1072.93</td>
<td>566.41</td>
<td>59.97</td>
</tr>
</tbody>
</table>

Message: pivoting is even more expensive on hybrid systems!
The graph shows the performance of three different operations: `pdgemm`, `pdgeqrf`, and `pdgeqpf`, in terms of GFLOPS (Giga Floating Point Operations Per Second) against the number of processors. The operations are plotted on a logarithmic scale, indicating the relationship between the number of processors and the performance of these operations.

- **pdgemm** is represented by a solid blue line.
- **pdgeqrf** is represented by a dashed red line.
- **pdgeqpf** is represented by a dashed green line.

The graph suggests a linear increase in performance with an increase in the number of processors for all three operations.
Question and the rest of my talk

Question:

• How to re-design higher-level matrix algorithms using fastest matrix operations?

Two Case Studies:

1. Communication-reducing algorithm for Green’s function calculation and application in Quantum Monte Carlo (QMC) simulations

2. Optimizing Halley’s iteration for computing matrix polar decomposition and application in First Principal Molecular Dynamics (FPMD)
Communication reducing algorithm for Green’s function calculation

joint with

Roger Lee
National Tsinghua Univ. Taiwan

Wenbin Chen
Fudan University, China

Richard Scalettar
Physics, UC Davis
Computational Material Science

- Simulation and understanding properties of solid-state materials: magnetism, metal-insulator transition, high temperature superconductivity, ...

- Many body simulation on multi-layer lattice using Hubbard model and quantum Monte Carlo simulation

- **QUEST** (QUantum Electron Simulation Toolbox): Fortran 90 package for determinant (and hybrid) Monte Carlo simulations
QUEST kernel: Green’s function (matrix) calculation

\[
G = (I + B_L B_{L-1} \cdots B_2 B_1)^{-1}
\]

where

\[
B_i = B \cdot V_i = e^{\Delta \tau K} \cdot \text{diag}(e^{\pm \lambda}),
\]

- \(K\) is the *hopping matrix*, an adjacency matrix of the lattice
- \(\Delta \tau\) is the time discretization parameter.
- \(L\) is the time slice
- \(\lambda = \cosh^{-1}(e^{U \Delta \tau / 2})\).
- \(U\) is a potential energy parameter for local repulsion between electrons

Challenge: \(B_L B_{L-1} \cdots B_2 B_1\) is extremely ill-conditioned!
1. Compute an “UDT decomposition” of the product

\[B_L B_{L-1} \cdots B_2 B_1 = U_L D_L T_L \]

where \(D \) is stratified (graded)

\[D = \begin{bmatrix} X & \; & \; \\ \; & X & \; \\ \; & \; & \ddots \\ \; & \; & \; & X \end{bmatrix} \]

2. Compute

\[G = T_L^{-1}(U_L^T T_L^{-1} + D_L)^{-1} U_L^T. \]

The pivoted QR decomposition is used for the stratification.

There are a number of work on the product of matrices by numerical linear algebraists [Stewart, ...]
Physicist’s method [Loh et al]

1. Compute pivoted QR decomposition: \(B_1 = Q_1 R_1 P_1^T \)

2. Set

 \[
 \begin{align*}
 U_1 &= Q_1 \\
 D_1 &= \text{diag}(R_1) \\
 T_1 &= D_1^{-1} R_1 P_1^T
 \end{align*}
 \]

3. For \(i = 2, 3, \cdots, L \).

 - Compute \(C_i = (B_i U_{i-1}) D_{i-1} \). \text{ (column scaling)}
 - Compute pivoted QR decomposition: \(C_i = Q_i R_i P_i^T \).
 - Set

 \[
 \begin{align*}
 U_i &= Q_i \\
 D_i &= \text{diag}(R_i) \\
 T_i &= (D_i^{-1} R_i) (P_i^T T_{i-1})
 \end{align*}
 \]

4. Compute \(G = T_L^{-1} (U_L^T T_L^{-1} + D_L)^{-1} U_L^T \).
However, *pivoting* is very expensive on multicore Intel Core™ Quad 2.4GHz,

- **DGEMM**: matrix-matrix multiplication
- **DGEQRF**: QR decomposition
- **DGEQP3**: pivoted QR decomposition

![Graph showing speed (Gflop/s) vs problem size and scalability vs number of processors](image)

Speed (Gflop/s)

Scalability
Pivoting is even more expensive on distributed systems

Cray XT4 (Franklin of NERSC)
SOF algorithm - without the pivoting

Structured orthogonal factorization (SOF) algorithm

1. Set $M_2 = I$, $A_2 = B_1$
2. For $i = 2, 3, \cdots, L$
 (a) compute QR decomposition:
 \[
 \begin{bmatrix}
 M_i \\
 -B_i
 \end{bmatrix}
 =
 \begin{bmatrix}
 Q_{11}^{(i)} & Q_{12}^{(i)} \\
 Q_{21}^{(i)} & Q_{22}^{(i)}
 \end{bmatrix}
 \begin{bmatrix}
 R_i \\
 0
 \end{bmatrix}
 \]
 (b) update
 \[
 \begin{bmatrix}
 A_{i+1} & M_{i+1}
 \end{bmatrix}
 =
 \begin{bmatrix}
 (Q_{12}^{(i)})^T & (Q_{22}^{(i)})^T
 \end{bmatrix}
 \begin{bmatrix}
 A^{(i)} \\
 I
 \end{bmatrix}
 \]
3. Compute $G = (M_L + A_L)^{-1}M_L$

Computational kernel: QR decomposition *without pivoting*.
Price: SOF takes about $3 \times$ more flops than Physicist’ method.
SOF algorithm – motivation and correctness

• Motivation: Connection between the Green’s function and the inverse of the following block p-cyclic matrix:

\[
G = (I + B_L B_{L-1} \cdots B_2 B_1)^{-1} = (L, L)\text{-subblock of } M^{-1}
\]

where

\[
M = \begin{bmatrix}
I & & & B_1 \\
-B_2 & I & & \\
& -B_3 & I & \\
& & \ddots & \ddots \\
& & & -B_L & I
\end{bmatrix}
\]

• Correctness: by direct verification
SOF algorithm – correctness

By the QR decomposition, we have

\[
\left(Q_{12}^{(i)} \right)^T M_i - \left(Q_{22}^{(i)} \right)^T B_i = 0
\]

Since \(M_2 = I \) and \(M_i = \left(Q_{22}^{(i-1)} \right)^T \) for \(i > 2 \), the above equations can be rewritten as

\[
\begin{cases}
\left(Q_{12}^{(2)} \right)^T = \left(Q_{22}^{(2)} \right)^T B_2 \\
\left(Q_{12}^{(i)} \right)^T \left(Q_{22}^{(i-1)} \right)^T = \left(Q_{22}^{(i)} \right)^T B_i \quad \text{for}\quad i \geq 3
\end{cases}
\]

Note that \(Q_{22}^{(i)} \) are invertible,

\[
\begin{cases}
\left(Q_{12}^{(2)} \right)^T = \left(Q_{22}^{(2)} \right)^T B_2 \\
\left(Q_{12}^{(i)} \right)^T = \left(Q_{22}^{(i)} \right)^T B_i \left(Q_{22}^{(i-1)} \right)^{-T} \quad \text{for}\quad i \geq 3
\end{cases}
\]
Hence
\[
\left(Q^{(L)}_{12} \right)^T \cdots \left(Q^{(3)}_{12} \right)^T \left(Q^{(2)}_{12} \right)^T = \left(Q^{(L)}_{22} \right)^T B_L \cdots B_3 B_2.
\]
By steps 1 and 2(b) of SOF,

\[
A_L = \left(Q^{(L)}_{12} \right)^T \cdots \left(Q^{(3)}_{12} \right)^T \left(Q^{(2)}_{12} \right)^T B_1.
\]

Hence

\[
A_L = \left(Q^{(L)}_{22} \right)^T B_L \cdots B_3 B_2 B_1.
\]

In summary,

\[
(M_L + A_L)^{-1} M_L = \left[\left(Q^{(L)}_{22} \right)^T + \left(Q^{(L)}_{22} \right)^T B_L \cdots B_2 B_1 \right]^{-1} \left(Q^{(L)}_{22} \right)^T
\]

\[
= (I + B_L \cdots B_2 B_1)^{-1} = G.
\]
SOF algorithm – Implementation

- QR decomposition in LAPACK:
 1. **DGEQRF**: compute the QR decomposition, Q is stored implicitly
 2. **DORGQR**: forming the full Q-factor explicitly

\[
Q = I - VT \mathbf{V}^T,
\]

T is an $n \times n$ upper triangular, and V is $2n \times n$ (DLARFT).
SOF algorithm – Implementation 1

- Call DGEQRF for QR decomposition
- explicitly form the full Q-factor by DORGQR.
SOF algorithm – Implementation 2

Modify \texttt{DORGQR} to compute $Q_{12}^{(i)}$ and $Q_{22}^{(i)}$ directly:

- Let V be conformally partitioned

\begin{equation}
V = \begin{bmatrix} V_u \\ V_d \end{bmatrix},
\end{equation}

- Then the right half of the Q-factor can be computed by

\[
Q_{12}^{(i)} = -V_uTV_d^T
\]
\[
Q_{22}^{(i)} = I - V_dTV_d^T.
\]

- Note that V_u is a lower triangular matrix, used to reduce the cost of matrix multiplication.
Modify `DGEQRF` to compute the T matrix recursively.

- If

$$T = \begin{bmatrix}
T_{11} & T_{12} & \cdots & T_{1b} \\
T_{22} & T_{2b} \\
\vdots & \vdots \\
T_{bb}
\end{bmatrix},$$

`DGEQRF` produces diagonal blocks T_{ii} in order explicitly.

- Consider two consecutive block Householder transformations H_1 and H_2. Then

$$H_1 H_2 = (I - V_1 T_1 V_1^T)(I - V_2 T_2 V_2^T)$$

$$= I - (V_1 V_2) \begin{bmatrix}
T_1 & -T_1 V_1^T V_2 T_2 \\
0 & T_2
\end{bmatrix} \begin{bmatrix}
V_1^T \\
V_2^T
\end{bmatrix},$$

- The “T” matrix of the merged Householder transformation can be computed with additional computation of $-T_1 V_1^T V_2 T_2$.

SOF algorithm – Implementation 3

Performance – I

Green’s matrix

\[G = (I + B_{96}B_{95} \cdots B_2B_1)^{-1} \]

on a 32 × 32 lattice \((n = 1024)\)

<table>
<thead>
<tr>
<th>CPU elapsed time</th>
<th>1 core</th>
<th>2 cores</th>
<th>4 cores</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loh’s</td>
<td>95.93</td>
<td>65.56</td>
<td>51.23</td>
</tr>
<tr>
<td>Impl 1</td>
<td>195.96</td>
<td>110.91</td>
<td>69.66</td>
</tr>
<tr>
<td>Impl 2</td>
<td>139.68</td>
<td>74.34</td>
<td>43.94</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GFlop/s rate:</th>
<th>1 core</th>
<th>2 cores</th>
<th>4 cores</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loh’s</td>
<td>5.76</td>
<td>8.42</td>
<td>10.78</td>
</tr>
<tr>
<td>Impl 1</td>
<td>7.65</td>
<td>13.51</td>
<td>21.52</td>
</tr>
<tr>
<td>Impl 2</td>
<td>7.59</td>
<td>14.25</td>
<td>24.12</td>
</tr>
</tbody>
</table>

Intel Core™ i7 Quad 2.66GHz, ifort Fortran and MKL
Performance – II

Green’s matrix

\[G = (I + B_{12}B_{11} \cdots B_2B_1)^{-1} \]

on a 64 × 64 lattice \((n = 4096)\)

<table>
<thead>
<tr>
<th>CPU elapsed time</th>
<th>GFlop/s rate:</th>
</tr>
</thead>
</table>
| \begin{tabular}{lllll}
 No. of Proc. & 16 & 64 & 256 & 1024 \\
 (4x4) & \hline
 Loh’s & 354.36 & 127.13 & 41.12 & 53.23 \\
 Impl 4 & 249.29 & 79.36 & 29.21 & 21.29 \\
 Impl 5 & 158.35 & 57.75 & 28.55 & 26.79 \\
\end{tabular} | \begin{tabular}{lllll}
 No. of Proc. & 16 & 64 & 256 & 1024 \\
 (4x4) & \hline
 Loh’s & 12.64 & 35.23 & 108.92 & 84.14 \\
 Impl 4 & 61.20 & 192.26 & 522.34 & 716.65 \\
 Impl 5 & 70.68 & 193.80 & 392.02 & 417.77 \\
\end{tabular} |

Intel Core™ i7 Quad 2.66GHz, ifort Fortran and MKL
Further reading - I

Green’s function calculation, may appear in different form, is one of fundamental problems in nano-scale simulations. The physical background and related numerical linear algebra problems are discussed in detail in the following reference

A pre-print of the reference is available at

Optimized Halley’s iteration for computing matrix polar decomposition

joint with
Yuji Nakatsukasa Applied Math, UC Davis
Francois Gygi Applied Science/CS, UC Davis
Electronic structure calculations

- Investigate the properties of solids, liquids, biomolecules, and nanoparticles
- First-principles molecular dynamics (FPMD) based on the plane-wave, pseudopotential formalism
- Qbox: a C++/MPI implementation of FPMD for massively parallel computers (F. Gygi et al)
Subspace alignment in Self-consistent iteration

Given wave functions $Y(t - 1)$ and $Y(t)$ at time steps $t - 1$ and t:

- Compute QR decomposition $Y(t) = \hat{Y}(t)R$ (tall and skinny QR)
- Solve the Procrustes problem
 $$\min_Q \|Y(t - 1) - Y(t)Q\|_F$$
- Compute $\tilde{Y} = 2\hat{Y}(t)Q - Y(t - 1)$
- Obtain trial wavefunction $\hat{Y}(t + 1)$ for the time step $t + 1$ by QR: $\hat{Y}(t) = \hat{Y}(t + 1)R$

Ref: [Arias et al’92, Edelman et al’99, Fattebert and Gygi’04]
Matrix polar decomposition

- Given $A \in \mathbb{C}^{n \times n}$, compute the polar decomposition
 \[A = U H, \]
 where
 \[U^H U = I \quad \text{and} \quad H^H = H \geq 0 \]

- Application: orthogonal procrustes problem in *subspace alignment* of SCF iteration for solving Kohn-Sham equation in electronic structure calculation:
 \[\min_U \| X_i - \hat{X}_i U \| \]
Newton’s iteration

- Newton’s iteration:
 \[X_{k+1} = \frac{1}{2} \left(X_k + X_k^{-H} \right), \quad X_0 = A. \]

- \(X_k \to U \) as \(k \to \infty \)

 Singular values \(\sigma_i(X_k) \to 1 \) as \(k \to \infty \)

- The convergence is slow when \(A \) is ill-conditioned.

- Scaled Newton’s iteration

 \[X_{k+1} = \frac{1}{2} \left(\zeta_k X_k + (\zeta_k X_k)^{-H} \right), \quad X_0 = A, \]

- The inverse \(X_k^{-1} \) has to be computed explicitly.
Newton’s iteration variant

- Scaled Newton’s iteration variant (SNV):
 \[X_{k+1} = 2\eta_k X_k \left(I + \eta_k^2 X_k^H X_k \right)^{-1}, \quad Y_0 = \eta_0 A, \]

- Inverse-free implementation: SNV can be implemented using an QR decomposition (discussed later).

- Unfortunately, even the inverse-free implementation is not numerical stability?
discovered by [Crudge ’98] and [Byers and Xu ’01], independently
Halley’s iteration

- Halley’s iteration
 \[X_{k+1} = X_k(3I + X_k^H X_k)(I + 3X_k^H X_k)^{-1}, \quad X_0 = A. \]

- There is a family of iterations based on rational function approximation

- **Theorem.** \(X_k \to U \) and the asymptotic rate is cubic.

- The initial steps could be *still* slow

Consider the \(2 \times 2 \) matrix: \(X_0 = A = \begin{bmatrix} 1 & 0 \\ 0 & 10^{-10} \end{bmatrix}. \)

The \(k \)th Halley’s iterate is given by

\[X_k = \begin{bmatrix} 1 \\ x_k \end{bmatrix}, \quad x_k = \frac{x_{k-1}(3 + x_{k-1}^2)}{1 + 3x_{k-1}^2}. \]

It takes 24 iterations to satisfy \(\|1 - X_{24}\| < 10^{-16}. \)
Dynamically weighted Halley’s iteration

- Dynamically weighted Halley’s (DWH) iteration

\[X_{k+1} = X_k(a_k I + b_k X_k^H X_k)(I + c_k X_k^H X_k)^{-1}, \]

where \(X_0 = A/\alpha \) and \(\alpha \geq ||A||_2. \)

- Question: how to dynamically choose \(a_k, b_k \) and \(c_k \) to optimize the convergence rate?
How to dynamically determine a_k, b_k and c_k? - first step

• Let l_0 be chosen such that

$$[\sigma_{\text{min}}(X_0), \sigma_{\text{max}}(X_0)] \subseteq [l_0, 1] \subset (0, 1].$$

• $\sigma_i(X_1) = g_0(\sigma_i(X_0))$, and

$$[\sigma_{\text{min}}(X_1), \sigma_{\text{max}}(X_1)] \subseteq [\min g_0(x), \max g_0(x)].$$

where

$$g_0(x) = x \frac{a_0 + b_0x^2}{1 + c_0x^2}.$$

• Rational optimization problem: find a_0, b_0, c_0 such that

1. $0 < g_0(x) \leq 1$ for $l_0 < x \leq 1$.

2. the max-min property

$$\max_{a_0, b_0, c_0} \left\{ \min_{l_0 \leq x \leq 1} g_0(x) \right\}.$$

• Update $l_1 = \min_{l_0 \leq x \leq 1} g_0(x)$, such that

$$[\sigma_{\text{min}}(X_1), \sigma_{\text{max}}(X_1)] \subseteq [l_1, 1] \subset (0, 1].$$
How to dynamically determine a_k, b_k and c_k? – general case

- At the $(k + 1)$st iteration, we have

$$[\sigma_{\text{min}}(X_k), \sigma_{\text{max}}(X_k)] \subseteq [l_k, 1] \subset (0, 1].$$

and

$$[\sigma_{\text{min}}(X_{k+1}), \sigma_{\text{max}}(X_{k+1})] \subseteq \left[\min_{l_k \leq x \leq 1} g_k(x), \max_{l_k \leq x \leq 1} g_k(x) \right],$$

where

$$g_k(x) = x \frac{a_k + b_k x^2}{1 + c_k x^2}.$$

- Rational optimization problem: find a_k, b_k and c_k such that:

 (1) $0 < g_k(x) \leq 1$ for $l_k < x \leq 1$.

 (2) the max-min property $\max_{a_k, b_k, c_k} \left\{ \min_{l_k \leq x \leq 1} g_k(x) \right\}$.

- Update $l_{k+1} = \min_{l_k \leq x \leq 1} g_k(x)$
Solving rational optimization problem

- For the special three-parameter case, we have developed a direct method to obtain analytic expressions for a_k, b_k and c_k – *tedious, but doable*

- In general, for high-order Halley’s iteration we can first reformulate the problem, and then use a SDP solver, say SeDuMi or YALMIP

- Applications of rational optimization problem in shape optimization of transfer functions – *[Nie et al ’09]*
Convergence theorem and number of iterations

- **Theorem.** $X_k \to U$ and the asymptotic rate is cubic.
- For the 2×2 example, 5 iterations such that $\|1 - X_5\| < 10^{-16}$.
- In general, we have the following theoretical prediction for the number of iterations

<table>
<thead>
<tr>
<th>$\kappa(A)$</th>
<th>10^1</th>
<th>10^2</th>
<th>10^5</th>
<th>10^8</th>
<th>10^{10}</th>
<th>10^{12}</th>
<th>10^{16}</th>
</tr>
</thead>
<tbody>
<tr>
<td>SN</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>DWH</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>
Inverse-free implementation

- **Theorem.** Given the QR decomposition

\[
\begin{bmatrix} \eta A \\ I \end{bmatrix} = \begin{bmatrix} Q_1 \\ Q_2 \end{bmatrix} R.
\]

Then

\[
Q_1 Q_2^H = \eta A(I + \eta^2 A^H A)^{-1}.
\]

[Zha & Zhang’96, Higham’07]
Inverse-free implementation - DWH

- Dynamically weighted Halley’s (DWH) iteration

\[
X_{k+1} = X_k (a_kI + b_kX^H_kX_k) (I + c_kX^H_kX_k)^{-1}
\]

\[
= \frac{b_k}{c_k}X_k + (a_k - \frac{b_k}{c_k}) X_k(I + c_kX^H_kX_k)^{-1}
\]

- QR based implementation of DHW:

\[
\begin{bmatrix}
\sqrt{c_k}X_k \\
I
\end{bmatrix} = \begin{bmatrix} Q_1 \\ Q_2 \end{bmatrix} R,
\]

\[
X_{k+1} = \frac{b_k}{c_k}X_k + \frac{1}{\sqrt{c_k}} \left(a_k - \frac{b_k}{c_k}\right) Q_1 Q_2^H,
\]
Example: verification of theoretical iteration count

Diagonal matrices A. Iter numbers and $\|X_k - I\|_F$

<table>
<thead>
<tr>
<th>$\kappa(A)$</th>
<th>10</th>
<th>10^2</th>
<th>10^5</th>
<th>10^{10}</th>
<th>10^{15}</th>
<th>10^{20}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Halley</td>
<td>5</td>
<td>7</td>
<td>14</td>
<td>24</td>
<td>35</td>
<td>45</td>
</tr>
<tr>
<td>Gander</td>
<td>6</td>
<td>7</td>
<td>9</td>
<td>14</td>
<td>18</td>
<td>24</td>
</tr>
<tr>
<td>DWH</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Halley</td>
<td>4.7e-16</td>
<td>5.4e-16</td>
<td>2.4e-16</td>
<td>1.1e-16</td>
<td>1.0e-16</td>
<td>1.1e-16</td>
</tr>
<tr>
<td>Gander</td>
<td>7.6e-16</td>
<td>7.5e-16</td>
<td>8.0e-16</td>
<td>7.4e-16</td>
<td>8.0e-16</td>
<td>6.4e-16</td>
</tr>
<tr>
<td>DWH</td>
<td>4.9e-16</td>
<td>3.8e-16</td>
<td>3.1e-16</td>
<td>5.7e-16</td>
<td>6.6e-16</td>
<td>5.4e-16</td>
</tr>
</tbody>
</table>
Example: Q-DWH and scaled Newton’s iteration

Random matrices with varying condition numbers:

<table>
<thead>
<tr>
<th>kappa</th>
<th>10^2</th>
<th>10^8</th>
<th>10^{15}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>min</td>
<td>max</td>
<td>min</td>
</tr>
<tr>
<td>iter</td>
<td>Q-DWH</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>SN</td>
<td>6</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>res</td>
<td>Q-DWH</td>
<td>5.3e-16</td>
<td>7.3e-16</td>
</tr>
<tr>
<td>SN</td>
<td>7.4e-16</td>
<td>9.8e-16</td>
<td>7.2e-16</td>
</tr>
</tbody>
</table>

Multicore implementation is progress.
Further reading - II

The inverse-free implementation of the Halley’s iteration is described in the following paper

It is available on our class website.
Concluding remarks

1. Our case studies illustrate the ideas of designing communication-reducing numerical linear algebra algorithms to balance flops, communication, flops, stability and optimize the performance on modern computer architecture.

2. Hardware trend means the time has come to do!

3. Lots of prior work in numerical linear algebra community, but more open problems

4. Why stops at numerical linear algebra?