Seminar on open Source

Course Outline & Expectations.
Work Load

- Lots of reading---about 4-5 papers a week, read carefully, comment, think about questions, vigorous participation in Class discussions.
- Present one, perhaps 2 topics during the quarter
- Write a final report: survey, or original research on the topic you present in class.
Large Software Projects:

Picture from Hendik Post, Uni-Tuebingen
Large Software Projects

Software is Large, Complex, under constant evolutionary pressure

Hard for both experienced programmers & new hands

Therefore has lots of u-no-whats, that makes...

...users unhappy
Immigration: Hard for new people to join & become productive.

Tenure: Experienced people become bored & territorial.

Communication & Coordination: Design can help, or hinder!

Immigration: Hard for new people to join & become productive.
Where OSS comes in

Social: Large distributed teams, but Comprehensive interaction archives.

Technical: Big and complicated, but every version, and every change.

Bugs: Big and buggy, but every bug report and (sometimes) how
Research in OSS

Major Trends

- Goal (Science): Understand surprisingly regular distributions in populations (power laws, etc).
- Goal (Science): Explain emergent properties in software structures.
Research in OSS

Major trends:

- Goal (Engineering): Improve software quality
- Goal (Engineering): Improve software evolvability, understandability and maintainability.
- Goal (Engineering): Improve social/personnel performance (immigration, retention, communication & co-ordination)
- Goal (Engineering): Predict likelihood of project success/failure
Research in Data Extraction

- Understanding/analyzing software changes.
- Extracting information from Emails
- Extracting information from Bug reports
- From source code: reference data, clones, etc.
Research in Metrics

- A metric is a measure of some property.
- Uses: assessment & planning
- Variety of measures for quality, complexity, cost....
Software “Physics”

Principle: Regular, large-scale properties can be precisely predicted from random, but theory-governed small-scale events (statistical physics). Examples...

- Studying properties of software graphs.
- Properties of source code sizes & evolution.
- Studying design as an optimization problem.
Code Clones

Principle: People copy and paste code (reasons...)

- Effects: code bloat, maintenance nightmares, defect replications....

- Remedies:
 - Finding clones automatically
 - Defect finding
 - Refactoring code.
Mining Generalities from specifics

General Principle: When things happen together more than they should, this means something.

• When do function calls occur together (uses..)
• When are calls added together? (uses...)
• In what order do function calls occur? (uses...)
• How do I get from object type A to ... B? (uses..)
Recommenders

General Principle: Give programmers useful suggestions to help navigate very large information spaces.

- What bug reports/documents are similar
- Who should fix this bug?
- Who should join this discussion?
- What other pieces of code should I look at?
Software Evolution

Theory: Software Evolution is affected by i) Design and ii) Requirements Creep and iii) People

- Which parts of the system are stable/unstable? why?
- What kinds of evolutionary changes create problems?
- Are there different evolutionary “epochs”? How and when do transitions happen?
- Does modular design affect evolution (stability analysis)
Social Network theories of OSS

General Principle: Graph theory provides a useful abstraction to study.

• Who are the important people? how did they get that way?

• Who interacts with whom? Who helps whom?

• Are relationships reciprocal? specifically or generally?

• How do social structures and artifact structures relate? (socio-technical congruence)? Does this relationship evolve? does it matter?
Role Transition in Open Source

General Principle: Several roles exist within OSS, and healthy, timely transitions between roles in vital to both project and participant success.

• What are the roles? What are the stated policies of transitions?

• Do the policies and the observed transitions match?

• When do the transitions happen?

• What factors influence these transitions?
Data Visualization

General Principle: Visualization to provide insights not readily gained using traditional analyses.

- Visualizing the social “climbing” of individuals
- Visualizing the evolution of large software.
- Social & technical activity joint visualization.
- Visualizing evolution of discussions and the behaviour of individuals
Design patterns & Evolution

General Principle: Design patterns are supposed to provide certain features of evolvability, decoupling etc. Do they?.

• How to find pattern instances.
• Outcomes of interest.
• How to do the statistics.
Micro-designs

General Principle: The structure of large graphs/networks is influenced by the “preferences” of individual participants in these graphs (examples...). These individual preferences give rise to frequent occurrence of “graphlets”.

- Do graphlet frequencies describe programmer social networks, collaborations, and design networks?
- Are specific graphlets associated with interesting outcomes: e.g., stability, defect occurrence, social boundaries, etc.
- Are software “genuses” associated with graphlet frequencies.
Innovation in OSS

General Principle: Evangelicals claim that OSS Is HIGHLY INNOVATIVE. Oh Really?

• How does population matter?
• Does the “gift culture”? .
• Does the “ego boo?”
• Does the “freedom of expression/choice”? (within and between projects)
Cognitive Studies of Program understanding

General Principle: Developers spend between 50-80% of their time reading & understanding code. Why? How? Can we improve this??

• What questions do programmers ask during reading?
• What are the cognitive mechanisms of program understanding?
• What makes some programs hard to understand?
• What are the effects of understanding levels?
Interaction of OSS & Business

General Principle: OSS is increasingly connect to Commercial interests. What are the causes/effects?

• What are the effects of commercial involvement?
• Which projects have commercial involvement?
• Are compensated programmers and pure volunteers different in effectiveness/productivity/social status?
Conclusion

Come talk to me now or tomorrow during office hours (11-12:30) about what you want to work on. Need to tie this up right away.