If tiles abut with matching kinds of (positive strength) glue, then they bind.
Self-Assembly at Temperature 1
Tiling the Plane

If tiles abut with matching kinds of (positive strength) glue, then they bind.
Self-Assembly at Temperature 1

Tiling the Plane

If tiles abut with matching kinds of (positive strength) glue, then they bind.

Tile set:
Self-Assembly at Temperature 1
Tiling the Plane

If tiles abut with matching kinds of (positive strength) glue, then they bind.
Self-Assembly at Temperature 1
Tiling the Plane

Tile set:

If tiles abut with matching kinds of (positive strength) glue, then they bind.
Self-Assembly at Temperature 1
Tiling the Plane

If tiles abut with matching kinds of (positive strength) glue, then they bind.

Tile set:
Self-Assembly at Temperature 1
Tiling the Plane
Self-Assembly at Temperature 1
Building a Periodic Line

Tile set:

S 1
1 1 2
2 2 1
Self-Assembly at Temperature 1
Building a Periodic Line

Tile set:

S 1

S 1 1 2

S 1 1 2
Self-Assembly at Temperature 1
Building a Periodic Line

Tile set:
Self-Assembly at Temperature 1
Building a Periodic Line

Tile set:

S 1 1 1 1 2 2 1

S 1 1 2 2 1
Self-Assembly at Temperature 1
Building a Periodic Line

Tile set:
Self-Assembly at Temperature 1
Building a Periodic Line

Tile set:
Self-Assembly at Temperature 1

Building a “Comb”

Tile set:
Self-Assembly at Temperature 1
Building a “Comb”

Tile set:

S

1

3

1

4

3

2

1

4

1

2

3

4

3

2

1
Self-Assembly at Temperature 1
Building a “Comb”

Tile set:
Self-Assembly at Temperature 1
Building a “Comb”

Tile set:
Self-Assembly at Temperature 1
Building a “Comb”

Tile set:
Self-Assembly at Temperature 1
Building a “Comb”

Tile set:
Self-Assembly at Temperature 1
Building a “Comb”

Tile set:
Self-Assembly at Temperature 1
Building a “Comb”

Tile set:
Self-Assembly at Temperature 1
Building a “Comb”

Tile set:
Self-Assembly at Temperature 1
Building a “Comb”

Tile set:

S 1

3 1 2

2 2 1
Self-Assembly at Temperature 1
Building a “Comb”
Self-Assembly at Temperature 1
Building an “Eventual Comb”
Self-Assembly at Temperature 1
Building an "Eventual Comb"
Self-Assembly at Temperature 1
Building an “Eventual Comb”
Self-Assembly at Temperature 1
Building an “Eventual Comb”
Self-Assembly at Temperature 1
Building a Plane-Filling Grid
Power of Cooperative Binding

- “Temperature 1” self-assembly: any tile may bind if even one glue matches
Power of Cooperative Binding

- “Temperature 1” self-assembly: any tile may bind if even one glue matches
Power of Cooperative Binding

- “Temperature 1” self-assembly: any tile may bind if even one glue matches
Power of Cooperative Binding

- “Temperature 1” self-assembly: any tile may bind if even one glue matches
Power of Cooperative Binding

- “Temperature 1” self-assembly: any tile may bind if even one glue matches
Power of Cooperative Binding

- “Temperature 1” self-assembly: any tile may bind if even one glue matches
Power of Cooperative Binding

• “Temperature 1” self-assembly: any tile may bind if even one glue matches
Power of Cooperative Binding

- “Temperature 1” self-assembly: any tile may bind if even one glue matches
Power of Cooperative Binding

• “Temperature 1” self-assembly: any tile may bind if even one glue matches
Power of Cooperative Binding

- “Temperature 1” self-assembly: any tile may bind if even one glue matches
Power of Cooperative Binding

- “Temperature 1” self-assembly: any tile may bind if even one glue matches
Power of Cooperative Binding

- “Temperature 1” self-assembly: any tile may bind if even one glue matches
Power of Cooperative Binding

- “Temperature 1” self-assembly: any tile may bind if even one glue matches
Power of Cooperative Binding

- “Temperature 1” self-assembly: any tile may bind if even one glue matches
Power of Cooperative Binding

- “Temperature 1” self-assembly: any tile may bind if even one glue matches
Power of Cooperative Binding

- “Temperature 1” self-assembly: any tile may bind if even one glue matches
Power of Cooperative Binding

- “Temperature 1” self-assembly: any tile may bind if even one glue matches
Power of Cooperative Binding

- “Temperature 1” self-assembly: any tile may bind if even one glue matches
Power of Cooperative Binding

- “Temperature 1” self-assembly: any tile may bind if even one glue matches
Power of Cooperative Binding

● “Temperature 1” self-assembly: any tile may bind if even one glue matches
Power of Cooperative Binding

- “Temperature 1” self-assembly: any tile may bind if even one glue matches
Power of Cooperative Binding

- “Temperature 1” self-assembly: any tile may bind if even one glue matches
Power of Cooperative Binding

- "Temperature 1" self-assembly: any tile may bind if even one glue matches
Power of Cooperative Binding

- "Temperature 1" self-assembly: any tile may bind if even one glue matches
Power of Cooperative Binding

- “Temperature 1” self-assembly: any tile may bind if even one glue matches
Power of Cooperative Binding

- “Temperature 1” self-assembly: any tile may bind if even one glue matches
Our result relies on a notion of *pumpable* paths in an assembly.

Partial assembly, with grey seed tile
Pumpability

Our result relies on a notion of *pumpable* paths in an assembly.

“Sufficiently long” path
Our result relies on a notion of *pumpable* paths in an assembly.

Look at just this partial path
Our result relies on a notion of *pumpable* paths in an assembly.

Uniquely color each tile type
Our result relies on a notion of *pumpable* paths in an assembly.

Note the repeating pattern, beginning with yellow tiles, which we call a *pumpable segment*.
Our result relies on a notion of *pumpable* paths in an assembly.

The pumpable segment can be infinitely repeated, or *pumped*, to create an infinite, periodic path.
A directed temperature 1 TAS \mathbf{T} is *c*-pumpable if, given any two points p and q at least distance c apart in the terminal assembly of \mathbf{T}, there is a path from p to q that contains a pumpable segment within the first c points on the path.

In other words, every long path contains repetitions of a tile type (an obvious consequence of the pigeonhole principle) that can be pumped (repeated infinitely many times) to create a periodic path without colliding with the assembly up to that point.
Pumpability

Not all repeating patterns are pumpable!
Pumpability

Not all repeating patterns are pumpable!
Not all repeating patterns are pumpable!
Linear Sets

A set of points is *linear* if every point in the set can be expressed as a nonnegative integer affine combination of two integer vectors:

\[b + 3u + 2v \]

The dark green tiles make up a linear set

An initial offset \(b \) from the origin, plus a multiple of \(u \) plus a multiple of \(v \)