ECS 234: Data Analysis: Classification
Classification vs. Clustering

- **Classification:**
 - Goal: Placing objects (e.g. genes) into meaningful classes
 - **Supervised**

- **Clustering:**
 - Goal: Discover meaningful classes
 - **Unsupervised**
Classification vs. Clustering

• Classification
 – Needs meta-data
 – Can detect “weaker” patterns, but may be biased

• Clustering
 – No need for extra information
 – Patterns need to be strong in order to be discovered
Classification

Data

Classes (knowledge)

Supervised learning step

Classification
More a priori knowledge helps in identifying weaker patterns in data
Clustering

Data → Distance based cluster assignment → Clustering

Unsupervised learning step
Further clustering reveals only very strong signals
Learning Methods in Computational Functional Genomics

Supervised (Classification)
(a) Single Feature
 – Naïve bayes classifier
(b) Multiple Features
 – Nearest Neighbor
 – Decision Trees
 – Gaussian Processes
 – Neural Nets
 – Support Vector Machines

Unsupervised (Clustering)
(a) Single Feature
 – Nearest Neighbor
 – Agglomerative Clustering (hierarchical)
(b) Multiple Features
 – Partitional Clustering
 • K-Means
 • SOM
 – Plaid Models
 – Biclustering
Classification

• **Linear nearest neighbor model**

• **Support Vector Machines**
Molecular Classification of Cancer
(Golub et al, Science 1999)

Overview: General approach for cancer classification based on gene expression monitoring

The authors address both:
- Class Prediction (Assignment of tumors to known classes)
- Class Discovery (New cancer classes)
Cancer Classification

- Helps in prescribing necessary treatment
- Has been based primarily on morphological appearance
- Such approaches have limitations: similar tumors in appearance can be significantly different otherwise
- Needed: better classification scheme!
Cancer Data

• Human Patients; Two Types of Leukemia
 – Acute Myeloid Leukemia
 – Acute Lymphoblastic Leukemia

• Oligo arrays data sets (6817 genes):
 – Learning Set, 38 bone marrow samples,
 27 ALL, 11 AML
 – Test Set, 34 bone marrow samples,
 20 ALL, 14 AML
Classification Based on Expression Data

1. Selecting the most informative genes
 - Class Distinctors
 - Used to predict the class of unclassified genes

2. Class Prediction (Classification)
 - Given a new gene, classify it based on the most informative genes

3. Class Discovery (Clustering)
 - Using Self Organizing Maps discover new classes of genes
1. Selecting “Class Distinctor” Genes

The goal is to select a number of genes whose expression profiles correlate significantly well with an idealized class distinction, c

The class distinction is indicative of the two classes, and is uniformly high in the first (1=AML), and uniformly low for the second (0=ALL)

The correlation is calculated as: $P(g, c) = (\mu_1 - \mu_2) / (\sigma_1 - \sigma_2)$

Where μ_i’s and σ_i’s are the means and standard deviations of the log of expression levels of gene g for the samples in class AML and ALL.
Sufficient Information for Class Distinction?

To test whether there are informative genes based on c, the significance of having highly correlated gene patterns to c was assessed by neighborhood analysis.

Neighborhood analysis showed that 1100 genes were more highly correlated with the AML-ALL class distinction than would be expected by chance.
Selecting Informative Genes

- Large values of $|P(g,c)|$ indicate strong correlation
- Select 50 significantly correlated, 25 most positive and 25 most negative ones
- Selecting the top 50 could be possibly bad:
 - If AML gene are more highly expressed than ALL
 - Unequal number of informative genes for each class
2. Class Prediction

- Given a sample, classify it in AML or ALL
- Method:
 - Each of the fixed set of informative genes makes a prediction
 - The vote is based on the expression level of these genes in the new sample, and the degree of correlation with c
 - Votes are summed up to determine
 - The winning class and
 - The prediction strength (ps)

$$PS = \frac{(V_{\text{win}} - V_{\text{lose}})}{(V_{\text{win}} + V_{\text{lose}})}$$
Validity of Class Predictions

- Leave-one-out Cross Validation with the initial data
- Validation on an independent data set (test)
List of Informative Genes
3. Class Discovery

• What if the AML-ALL class distinction was not known before hand? Could we discover it automatically?

• Golub et al used a SOM clustering to discover two classes, and finer subclasses
Finer Classes

A

B

C

D
Conclusions

• Linear nearest-neighbor discriminators are quick, and identify strong informative signals well
• Easy and good biological validation

But
• Only gross differences in expression are found. Subtler differences cannot be detected
• The most informative genes may not be also biologically most informative. It is almost always possible to find genes that split samples into two classes
Support Vector Machines

• Inventor: V. N. Vapnik, late seventies
• Area of Origin: Theory of Statistical Learning
• In short: AI + Statistics
• Have shown promising results in many areas:
 – OCR
 – Object recognition
 – Voice recognition
 – Biological sequence data analysis
Kernel Methods Basics

KM can be used as classifiers for data classes with complex discrimination boundaries.

Kernel Functions map the data to higher dimensions where the discrimination boundary is simpler.
Linear Learning Machines

Binary classification problem

– Given: n training pairs, $(<x_i>, y_i)$, where $<x_i>=(x_{i1}, x_{i2}, \ldots, x_{ik})$ is an input vector, and $y_i=+1/-1$, is the corresponding classification into two classes H_+ and $H_-

– Out: A label y for a new vector x, as a function of the training pairs

$$y=D(x, ((<x_1>, y_1), (<x_2>, y_2), \ldots, (<x_n>, y_n)))$$
Linear Discriminator Function

The classification of new examples, x, is based on all the previous ones, weighted by:

- λ_i, measuring the importance of example i, and
- The kernel $K(x_i, x)$, measuring the similarity of new example x to the training x_i

$$y = D(x) = \sum_i y_i \lambda_i K(x_i, x)$$
Linear Classification

• Learn the class labels, y_i, on the training set
 – The Perceptron algorithm
 – Optimization: 0,1 Integer program
 – Many possible consistent classifiers

• Classify a new example, x, based on which side of the classifier line it is on

$$y = D(x, ((< x_i >, y_i),...,)) = << y > \cdot x > + b$$

$$= \sum_{i=1}^{n} y_i x_i + b$$
Discriminators and Support Vectors

Goal: To find good discriminators by maximizing the margins
Non-Linear Case

• Notice that the data during training appears only as a dot product

• Kernel functions, \[K(x_i, x_j) = \phi(x_i) \cdot \phi(x_j) \]

• Thus, the original data can be mapped, with a suitable mapping \(\phi \), to a space in which the discrimination task is easier

• All we need is such a decomposable Kernel function \(K \)
Possible Kernel Functions

Polynomial kernels: \((1 + x_i \cdot x_j)^m\)

Radial Basis Kernel:
\[e^{-\frac{|x_i-x_j|^2}{2\sigma^2}} \]

Neural Network Kernel: \(\tanh(\mu x_i^t x_j + \kappa)\)
Practical Considerations When Training the SVMs

- Computationally expensive to compute the Kernel function for each pair of elements
 - Solution: Use only part of the data, preferably the part that contributes most to the decision boundary
- How do we do that? Heuristics
Using SVMs to Classify Genes Based on Microarray Expression

“Knowledge-based analysis of microarray gene expression data by using support vector machines”, Brown et al., PNAS 2000

A method of functionally classifying genes based on DNA Microarray expression data based on the theory of SVMs.
Method

• A training data set
 – (1) genes that are known to have the same function, \(f \), and
 – (2) genes that are known to have a different function than \(f \)

• Such a training set can be obtained from publicly available data sources

• Use the SVM machinery on the above and predict known and new examples, and compare to other classification methods
Data

• Yeast genes
• Training data
 – 2467 genes
 – 79 hybridization exp.
• Test Data
 – 6221 genes (including all above)
 – 80 hybridization exp. (65 from above + 15 others)
• Functional classifications
 – Five functional classes from MYGD
Kernels and Other Methods

• Kernels used
 – Polynomial, degrees 1, 2, and 3
 – Radial

• Compared to four other methods
 – Parzen windows
 – Fisher’s linear discriminant
 – Two decision tree learners

• Tested false positives, false negatives, true positives, true negatives, and overall perf.
Results

-The SVMs outperform the other methods.

-Unannotated genes were predicted to be in functional classes

- Some functional classes cannot be predicted with SVMs possibly because they have little to do with gene expression

Table 1. Comparison of error rates for various classification methods

<table>
<thead>
<tr>
<th>Class</th>
<th>Method</th>
<th>FP</th>
<th>FN</th>
<th>TP</th>
<th>TN</th>
<th>S(M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCA</td>
<td>D-p 1 SVM</td>
<td>18</td>
<td>5</td>
<td>12</td>
<td>2,432</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>D-p 2 SVM</td>
<td>7</td>
<td>9</td>
<td>8</td>
<td>2,443</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>D-p 3 SVM</td>
<td>4</td>
<td>9</td>
<td>8</td>
<td>2,446</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Radial SVM</td>
<td>5</td>
<td>5</td>
<td>8</td>
<td>2,445</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Parzen</td>
<td>4</td>
<td>12</td>
<td>5</td>
<td>2,446</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>FLD</td>
<td>9</td>
<td>10</td>
<td>7</td>
<td>2,441</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>C4.5</td>
<td>7</td>
<td>17</td>
<td>0</td>
<td>2,443</td>
<td>-7</td>
</tr>
<tr>
<td></td>
<td>MOC1</td>
<td>3</td>
<td>16</td>
<td>11</td>
<td>2,446</td>
<td>-1</td>
</tr>
<tr>
<td>Resp</td>
<td>D-p 1 SVM</td>
<td>15</td>
<td>7</td>
<td>23</td>
<td>2,422</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>D-p 2 SVM</td>
<td>7</td>
<td>7</td>
<td>23</td>
<td>2,430</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>D-p 3 SVM</td>
<td>6</td>
<td>8</td>
<td>22</td>
<td>2,431</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>Radial SVM</td>
<td>5</td>
<td>11</td>
<td>19</td>
<td>2,432</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>Parzen</td>
<td>22</td>
<td>10</td>
<td>20</td>
<td>2,415</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>FLD</td>
<td>10</td>
<td>10</td>
<td>20</td>
<td>2,427</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>C4.5</td>
<td>18</td>
<td>17</td>
<td>13</td>
<td>2,419</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>MOC1</td>
<td>12</td>
<td>26</td>
<td>4</td>
<td>2,425</td>
<td>-4</td>
</tr>
<tr>
<td>Ribo</td>
<td>D-p 1 SVM</td>
<td>14</td>
<td>2</td>
<td>119</td>
<td>2,332</td>
<td>224</td>
</tr>
<tr>
<td></td>
<td>D-p 2 SVM</td>
<td>9</td>
<td>2</td>
<td>119</td>
<td>2,337</td>
<td>229</td>
</tr>
<tr>
<td></td>
<td>D-p 3 SVM</td>
<td>7</td>
<td>3</td>
<td>118</td>
<td>2,339</td>
<td>229</td>
</tr>
<tr>
<td></td>
<td>Radial SVM</td>
<td>6</td>
<td>5</td>
<td>116</td>
<td>2,340</td>
<td>226</td>
</tr>
<tr>
<td></td>
<td>Parzen</td>
<td>6</td>
<td>8</td>
<td>113</td>
<td>2,340</td>
<td>226</td>
</tr>
<tr>
<td></td>
<td>FLD</td>
<td>15</td>
<td>5</td>
<td>116</td>
<td>2,331</td>
<td>217</td>
</tr>
<tr>
<td></td>
<td>C4.5</td>
<td>31</td>
<td>21</td>
<td>100</td>
<td>2,315</td>
<td>159</td>
</tr>
<tr>
<td></td>
<td>MOC1</td>
<td>26</td>
<td>26</td>
<td>95</td>
<td>2,320</td>
<td>164</td>
</tr>
<tr>
<td>Prot</td>
<td>D-p 1 SVM</td>
<td>21</td>
<td>7</td>
<td>28</td>
<td>2,411</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>D-p 2 SVM</td>
<td>6</td>
<td>8</td>
<td>27</td>
<td>2,426</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>D-p 3 SVM</td>
<td>3</td>
<td>8</td>
<td>27</td>
<td>2,429</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>Radial SVM</td>
<td>2</td>
<td>8</td>
<td>27</td>
<td>2,430</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>Parzen</td>
<td>21</td>
<td>5</td>
<td>30</td>
<td>2,411</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>FLD</td>
<td>7</td>
<td>12</td>
<td>23</td>
<td>2,425</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>C4.5</td>
<td>17</td>
<td>10</td>
<td>25</td>
<td>2,415</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>MOC1</td>
<td>10</td>
<td>17</td>
<td>18</td>
<td>2,422</td>
<td>38</td>
</tr>
<tr>
<td>Hist</td>
<td>D-p 1 SVM</td>
<td>0</td>
<td>2</td>
<td>5</td>
<td>2,456</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>D-p 2 SVM</td>
<td>0</td>
<td>2</td>
<td>9</td>
<td>2,456</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>D-p 3 SVM</td>
<td>0</td>
<td>2</td>
<td>9</td>
<td>2,456</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Radial SVM</td>
<td>0</td>
<td>2</td>
<td>9</td>
<td>2,456</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Parzen</td>
<td>2</td>
<td>3</td>
<td>8</td>
<td>2,454</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>FLD</td>
<td>0</td>
<td>3</td>
<td>8</td>
<td>2,455</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>C4.5</td>
<td>2</td>
<td>2</td>
<td>9</td>
<td>2,454</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>MOC1</td>
<td>2</td>
<td>5</td>
<td>6</td>
<td>2,454</td>
<td>10</td>
</tr>
<tr>
<td>HTH</td>
<td>D-p 1 SVM</td>
<td>60</td>
<td>14</td>
<td>2</td>
<td>2,391</td>
<td>-56</td>
</tr>
<tr>
<td></td>
<td>D-p 2 SVM</td>
<td>3</td>
<td>15</td>
<td>0</td>
<td>2,448</td>
<td>-3</td>
</tr>
<tr>
<td></td>
<td>D-p 3 SVM</td>
<td>1</td>
<td>15</td>
<td>0</td>
<td>2,450</td>
<td>-1</td>
</tr>
<tr>
<td></td>
<td>Radial SVM</td>
<td>6</td>
<td>15</td>
<td>0</td>
<td>2,451</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Parzen</td>
<td>14</td>
<td>15</td>
<td>0</td>
<td>2,437</td>
<td>-14</td>
</tr>
<tr>
<td></td>
<td>FLD</td>
<td>14</td>
<td>15</td>
<td>0</td>
<td>2,437</td>
<td>-14</td>
</tr>
<tr>
<td></td>
<td>C4.5</td>
<td>2</td>
<td>15</td>
<td>0</td>
<td>2,449</td>
<td>-2</td>
</tr>
<tr>
<td></td>
<td>MOC1</td>
<td>6</td>
<td>16</td>
<td>0</td>
<td>2,448</td>
<td>-6</td>
</tr>
</tbody>
</table>
References and Further Reading

- Golub et al., Molecular Classification of Cancer, Science, 1999
- Brown et al., PNAS, 2000
- Baldi, Hatfield. DNA Microarrays and Gene Expression, Cambridge, 2002
- Cristianini and Shawe-Taylor, An Introduction to Support Vector Machines, Cambridge, 2000
- Shamir, Analysis of Gene Expression Data, Tel Aviv University, 2002, Lecture 7.
 \textit{http://www.math.tau.ac.il/~rshamir/ge/02/cribes/lec07.pdf}