Microarray Data

<table>
<thead>
<tr>
<th>Gene 1</th>
<th>Plate 1</th>
<th>Plate 2</th>
<th>...</th>
<th>Plate 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gene 2</td>
<td>0.013</td>
<td>2.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gene 3</td>
<td>...</td>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gene 6200</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Entries:

- Ratio of the color intensities green/red (Cy3/Cy5) (spotted)
- Single color intensity (Affy)
Microarray Data Properties

- A lot of data, but not enough!
- Many genes and few conditions (the dimensionality curse)
- Very few repeats (2, 3, 4, mainly)
- Data from different experiments difficult to compare: control conditions are different
- Inaccurate at low intensities
What Can We Do With Microarray Data?

- Fishing Expeditions vs. Hypotheses: differentially expressed genes
- Part/Whole Genome Hypotheses: cell/tissue classification
- Gene Expression vs. Gene Function: guilt by association (co-regulation)
- Transcription Regulation
- Fingerprinting
- Genome analysis
- Gene Circuitry
Lochart and Winzeler 2000
How Do We Do Those Things?

• Single Gene Differential Expression
• Similarity in Expression Patterns of Genes and Experiments (Classification)
• Co-regulation of Genes: function and pathways (Clustering)
• Network Inference (Modeling)
Microarray Data Analysis I

1. Experimental Design
2. Normalization and Transformation
3. Identification of differentially expressed genes
 - Fold test
 - T-test
 - Correction for multiple testing
Microarray Data Analysis II: Discovery

1. Classification
2. Clustering
3. Local Pattern Discovery
4. Projection Methods
 - PCA
 - SVD
1. Choice of Technology

a) Oligonucleotide and b) Spotted Arrays
• Array Design
 – Affy
 – cDNA libraries and probes

• Controls
 – Affy: PM-MM, and others
 – Negative controls
2. Experimental Design
(two-color DNA microarrays)

Reference

Direct
(with dye swap)

Loop
Types of Microarray Data Experiments

• Control vs. Test

• Time-wise
 – Snapshots (each experiment is different conditions)
 – Time-Course Experiments (each experiment is a time-point)

• Gene-knockout (perturbation experiments)
Distribution of Observed Values

Lochart and Winzeler 2000
Distribution of Observed Values is \sim log-normal

\log (Color Intensity) or $\log R/G$ is a good estimator of differential expression

But one can do better by properly accounting for all systematic sources of error
Log-ing the Data

• It should always be done unless a more sophisticated analysis will follow
• Good for two symmetry between up- and down-regulated genes
• Simple comparison across experimental designs
3. Data Acquisition and Visualization

- Image quantification (spot reading)
- Dynamic Range and spatial effects
- Scatterplots
- Systematic sources of error
1. Data Visualization

Image quantification (spot reading)
Dynamic Range

Some values are negative after background subtraction
Spatial Effects

Huber et al
Checking the Data: Scatterplots

- Visual Aids for Data Calibration
- Plotting Red vs Green Expression
Advanced Scatterplots: MA Plots

• Plotting Average vs. Differential Expression
 – $A = \log R + \log G$
 – $M = \log R - \log G$
 – Emphasize differences rather than similarities

• Mean and Variance have to be corrected in general
Sources of Error

• Spotting errors (tips, robot arm etc.)
• Imbalance in Red/Green Intensities
• PCR yield variance
• Preparation protocols (RNA degrading)
• Scanner and image analysis
4. Data Normalization

- Identification and removal of systematic sources of variation (adjusting the mean)
- To allow within slide and between slide data comparison

Before and after loess normalization of log data (locally weighted linear regression method)
5. Variance Stabilization

- Stochastic processes cause the variance of the log-values to be different at different intensities
A Simple, Realistic Model for Reducing Systematic Error

\[Y = \text{Measured intensity}, \ x = \text{True abundance} \]

\[Y = a + bx + \varepsilon \]

\(a\) is an additive factor, corresponding to systemic effects stemming from the experimental medium and does not result from \(x\)

\(b\) is a gain factor resulting from the relationships between the abundance, \(x\), and the rest of the experiment, i.e. color, detector gain, hybridization, etc.

\(\varepsilon\) is a normally distributed random error
Realistic Assumptions in the Model Yield Better Normalization

\[Y = \text{Measured intensity}, \ x = \text{True abundance} \]

\[Y = a + bx + \epsilon \]

\[b = e^{\eta} \]

\[\eta = N(0, \sigma_{\eta}), \epsilon = N(0, \sigma_{\epsilon}) \]

• The driving idea behind the model is to capture the variation of the variance at low intensities

• The normalcy assumptions are good approximations of real data
Fitting the Data

• Estimating the parameters of the model
• a, b, etc.
• Possible approaches:
 – least squares fit
 – Regression analysis
Consequences of the model

- $\log \frac{Y_r}{Y_g}$ is no longer the best estimator for $\log \frac{x_r}{x_g}$.
- The appropriate measure of differential expression becomes

$$
\Delta h = ar\sinh\left(\frac{\sigma\, \epsilon}{\sigma\, \eta} \cdot \frac{Y_r - a}{b}\right) - ar\sinh\left(\frac{\sigma\, \epsilon}{\sigma\, \eta} \cdot \frac{Y_g - a}{b}\right)
$$
This estimator has a constant variance across the range of intensities.

Huber et al
6. Identification of Differentially Expressed Genes in Replicated Microarray Experiments

Which genes are expressed differentially in different experiments?

<table>
<thead>
<tr>
<th></th>
<th>1,1</th>
<th>1,2</th>
<th>2,1</th>
<th>2,2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gene 1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Gene 2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

False Negatives (wrongly not identified)

False Positives (wrongly identified)
6.1. Statistical Tests

• Simple Fold Test
• Student t-test
• Wilcoxon rank sum
Simple Fold Accounting

• A gene is differentially expressed up (down) if $\log R/G > 2 (< 0.5)$

• Not good for low and high intensities (because the distribution of log-expression values has tails!)
Student-t test

Null Hypotheses Rejection:

− $H_j = \text{mean expression levels are equal for control and treatment for gene } j, j=1,\ldots,k$

− Let x_1^c,\ldots,x_{nc}^c and x_1^t,\ldots,x_{nt}^t be the normalized expression levels of nc and nt samples, respectively, in the control and test groups

− t-test for gene j

$$t_j = \frac{x_t - x_c}{\sqrt{\frac{\sigma^2_t}{n_t} + \frac{\sigma^2_c}{n_c}}}$$

where x is the average and σ the standard deviation
Alternatives for Student-t for Small Number of Replicates

- Regularized t-statistic
 - Estimate additional observations based on the overall data

- Full Bayesian Approaches
6.2. p-values

- H_j is rejected if the significance of the t-test score is high, i.e. the probability of it happening at random is low (based on the Student-t distribution).

- Probability of happening at random: $\alpha > 5\%$

- Rejection probability: $\alpha < 0.5 \%$
Correction for Multiple Hypotheses

- Even at small α, say 0.5, when testing 1000 genes for differential expression we get 5 hits at random: high amount of false positives
- FWER, FDR
- Correcting for testing k hypothesis:
 - FWEER, FDR, Bonferoni
 Bonferoni correction:
 $$ p = \min(k*p_t, 1) $$

Bonferoni doesn’t work well for microarray data!!!
Alternatives to Bonferoni

Bonferoni is a very conservative correction, resulting in too many false negatives

• Westfall and Young step-down adjusted p-values
 – Not as conservative, but computationally intensive

• FDR (ex. SAM) most promising
Adjusted vs. Unadjusted p-values
7. Microarray Data Standard

• Beyond systematic errors, microarray data from every experiment is different:
 – Environment
 – Experiment design
 – Data processing

• A Microarray Data standard is needed: MIAME: the minimal set of information about a microarray experiment
Microarray Standard (MAIME)

- Environmental Conditions
- Control Conditions
- Test Conditions
- Data
- Data Processing (if any)
8. Verification and Validation

• Verify results in the lab
• Validation: check for enrichment
 – Functional categories
 – GO annotation