
The Sky Is Not the Limit: Multitasking Across GitHub Projects

Bogdan Vasilescu†, Kelly Blincoe§, Qi Xuan‡, Casey Casalnuovo†, Daniela Damian],
Premkumar Devanbu†, Vladimir Filkov†

†Dept. Computer Science, University of California, Davis. Davis, CA 95616, USA
§Dept. Electrical & Computer Engineering, University of Auckland, New Zealand
‡Dept. Automation, Zhejiang University of Technology, Hangzhou 310023, China

]Dept. Computer Science, University of Victoria, Victoria, BC, Canada
{vasilescu, ccasal, ptdevanbu, vfilkov}@ucdavis.edu

k.blincoe@auckland.ac.nz, xuanqi@zjut.edu.cn, danielad@uvic.ca

ABSTRACT
Software development has always inherently required multi-
tasking: developers switch between coding, reviewing, test-
ing, designing, and meeting with colleagues. The advent
of software ecosystems like GitHub has enabled something
new: the ability to easily switch between projects. Develop-
ers also have social incentives to contribute to many projects;
prolific contributors gain social recognition and (eventually)
economic rewards. Multitasking, however, comes at a cogni-
tive cost: frequent context-switches can lead to distraction,
sub-standard work, and even greater stress. In this paper,
we gather ecosystem-level data on a group of programmers
working on a large collection of projects. We develop mod-
els and methods for measuring the rate and breadth of a
developers’ context-switching behavior, and we study how
context-switching affects their productivity. We also survey
developers to understand the reasons for and perceptions
of multitasking. We find that the most common reason for
multitasking is interrelationships and dependencies between
projects. Notably, we find that the rate of switching and
breadth (number of projects) of a developer’s work matter.
Developers who work on many projects have higher produc-
tivity if they focus on few projects per day. Developers that
switch projects too much during the course of a day have
lower productivity as they work on more projects overall.
Despite these findings, developers perceptions of the bene-
fits of multitasking are varied.

CCS Concepts
•Information systems → Data analytics; •Human-
centered computing → Empirical studies in collabo-
rative and social computing; •Software and its engi-
neering → Open source model;

Keywords
Multitasking; GitHub; productivity

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICSE ’16, May 14 - 22, 2016, Austin, TX, USA
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-3900-1/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2884781.2884875

1. INTRODUCTION
Multitasking is a staple of high performing professionals,

programmers included. It is the ability to stop working on
a task, switch to another, and return eventually to the first
one, as needed or as scheduled. The goal is to optimize hu-
man resource allocation, while reprioritizing tasks dynami-
cally [17]. When done well, or at least in a disciplined way,
multitasking can yield dividends [1, 4]. Clearly, if a task in
the queue has a higher priority than the current one, switch-
ing them can improve performance. For example, program-
mers encounter this when starting a new coding task, while
their previous, urgently needed fix undergoes testing. If test-
ing uncovers bugs, the urgent fix will require attention, and
the new coding task will be put on the back-burner.

Multitasking comes at a cost though [9]. Humans, pro-
grammers included, have a certain, limited amount of cog-
nitive flexibility, the mental ability to switch from thinking
about one concept to thinking about another. Limitations
apply to both the number of concepts we can juggle, as well
as to the difficulty in switching between them. For example,
coding simultaneously 7 simple functions is easier than cod-
ing 8 of them. Likewise, switching between two small ma-
trix multiplication problems is more difficult than switching
between two small integer additions. As we can imagine,
reaching our innate limitations can result in decreased per-
formance on all tasks and perhaps even diminished quality.
It is unknown how far multitasking can be pushed safely,
although some anecdotal evidence is available.

Software developers have long been pushing the limits on
multitasking [27] because of the innate modularity of the de-
velopment process and the independence of module process-
ing (e.g., one can code while tests are being executed). In
open-source software, developers also commonly contribute
to multiple projects in the same time period, bridging differ-
ent communities [20, 30]. With the advent of social coding
tools like GitHub, this has intensified. It is not uncommon
to find prolific developers contributing code to 5-10 GitHub
projects in the same week. In fact, contributing to as many
GitHub projects as possible is an accomplishment, valued
by peers and employers alike [32].

There are various reasons why developers are more prolific
on GitHub compared to other platforms. The features and
usability provided by GitHub play a big role [34]. It is one
example of how novel technology benefits programmers, and
it empowers them; GitHub’s platform is responsible for the
inception of many projects, that otherwise wouldn’t have
existed [34]. And the payoffs are also substantial [34]. With

so many drivers for multitasking, it is easy to see how one
could cross the limits from safe, productive multitasking into
an overloaded mode, where code output falls and bugs start
to multiply. The question really becomes where are those
limits, and what are their determinants?

Multitasking is a complex phenomenon, with costs along
different dimensions. This paper reports on a mixed meth-
ods study of multitasking and focus switching. Through
analysis of longitudinal data, we investigate how productiv-
ity (i.e., outputs produced per unit time) of prolific GitHub
programmers is determined by the number of projects they
work on, how much they focus on each (relative to the oth-
ers), and how diverse the projects they contribute to are in
terms of programming languages. Notably, the very plat-
form (GitHub) that has introduced this multi-project mul-
titasking phenomenon, also gives us all the tools we need to
understand when programmers are at risk to approach their
limits because of it. Further, a survey of 128 of these pro-
lific developers was used to better understand the reasons
for, and perceptions of, multitasking. The highlights of our
findings are that:
• 98% of prolific programmers have contributed to mul-

tiple projects per day at least once, but the patterns
are nuanced, and the reasons vary.
• Within limits, multitasking is associated with higher

productivity, but developers’ perception is mixed.
• Productivity does not decrease so long as developers

work on 4 or fewer projects per week. Yet, developers
often want to contribute to more projects regardless of
their current workload.

We introduce our research questions and related works in
Sec. 2, followed by our research methods (Sec. 3) and results
(Sec. 4). We discuss the significance of our contributions in
Sec. 5 and offer some concluding remarks in Sec. 6.

2. BACKGROUND
Multitasking and Performance. Multitaskinghas be-
come increasingly common among knowledge workers [17,
31, 37]. While there is some disagreement between studies,
it is generally believed that multitasking has non-monotonic
(concave) effects on individual productivity [1,4], with plenty
of theoretical evidence from Psychology, Management, and
Organizational Behavior (e.g., [1, 37]).

Positive effects are attributed to several factors. First,
multitasking may increase productivity since inevitable lulls
in one project (e.g., waiting for information from customers
and colleagues, waiting for the build process to finish) can
be filled with tasks related to other projects [1, 4, 37]. By
keeping multiple projects active at the same time, one can
switch focus between those projects during periods of rel-
ative down-time, enabling them to utilize their time more
efficiently, therefore increasing their productivity.

Second, multitasking may increase productivity through
cross-fertilisation and learning. If knowledge and skills re-
quired to work on a project are transferrable to other projects
as well, one may experience decreasing costs of contribut-
ing to multiple projects simultaneously, as they are able to
realize such knowledge transfers [29]. Similarly, exposure
to more projects brings about exposure to different envi-
ronments, providing opportunities to develop transferrable
skills. We have found evidence for such positive effects of
knowledge transfers on productivity (past experience with a
programming language) during prior work on GitHub [10].

On the other hand, several theories explain the cognitive
processes that account for decreased performance in multi-
tasking conditions, e.g., memory-for-goals [2]. Performing
a task may require maintaining some information mentally.
This information is stored in the central part of the work-
ing memory, an area of the brain with high access speed
but single-task capacity [3]. Memory-for-goals explains how
initiating a task requires strengthening its goal (“a mental
representation of an intention to accomplish a task” [2]) in
memory to the extent to which its activation rises above
other competing goals [49]. Therefore, in a multitasking
context, switching to another task involves first retrieving
its goal from memory (especially if multiple tasks require
storing state [9], which is not uncommon for programming),
and this takes time. With more multitasking, one starts
to incur cognitive switching costs for interrupting one task
and resuming another [9]. Ultimately, too much multitask-
ing leads to mental congestion, which negatively affects pro-
ductivity. As a result, workers start to experience “project
overload” [59], and become increasingly slower and more er-
ror prone [8, 16, 46, 48]. The duration of the interruption,
its complexity, and the moment when it occurs, all play an
important role in how disruptive task switching is [2, 18].

In addition to potential multitasking (e.g., when the tech-
nological context changes), switching between projects on
GitHub also involves a social component: different projects
may involve different social contexts and different teams,
all of which require adjusting to. Research has found that
the more diverse the “working spheres” associated with each
team are, the more disruptive switching between those teams
becomes, and the more it hinders productivity [31]. GitHub
is known to be a particularly diverse [53], social [14] ecosys-
tem, wherein many social attributes become salient [52] and
can impact impression formation and collaboration [33].

In summary, we expect productivity benefits for those
who engage in multitasking (we focus on multitasking across
GitHub projects in this paper), through load balancing,
more efficient work practices, learning, and cross-fertilisation.
However, there will be a point of diminishing returns, after
which these benefits will be offset by cognitive overload.

Focus Switching in Software Engineering. Multitask-
ing in software engineering is prevalent, to the extent that
rules of thumb have been proposed to discourage contribut-
ing to multiple projects at a time [55]. Perhaps more so
than in other pursuits in life, multitasking for programmers
amounts to switching away from one well defined technical
task, e.g., coding, before it has been finished, and onto an-
other. Coming back to such unfinished tasks necessitates
some retention of precise technical detail, then refocusing
on a new task, and later a recall of the previous one.

Developers switch focus frequently due to interruptions
[22,27,60], either external or self-inflicted [13]. For example,
technical dependencies may exist between tasks, and this can
cause developers to interrupt one another for coordination
purposes [5, 11, 21]. Developers’ focus switching patterns
within a project are complex [57]. Focus switches occur
when changing from one task to another, or when stopping
work to coordinate or talk to someone else on the team [56].

When developers resume a task after an interruption, they
must reconstruct the task’s context [38, 40–42]. Cues and
tools can help developers pick up where they left off, mak-
ing it easier to remember task details [26, 39], but even so
there is considerable overhead involved when switching. For

example, editing many files concurrently is found to neg-
atively impact software quality [58]. Similarly, fragmented
within-project work drives down developer productivity [50].
In this paper, we look beyond individual projects and inves-
tigate focus switching patterns and their impact on produc-
tivity when developers contribute across multiple projects.

Furthermore, a recent study found that developers asso-
ciate minimal interruptions and context switches with higher
productivity; however, they also reportedly feel productive
when significant task switching occurs [35]. A possible ex-
planation for this disparity is that software developers are
not always able to provide an accurate, retrospective report
on the amount of interruptions they face in a day [44]. Our
study continues this investigation of perceived effects of mul-
titasking on productivity.

Research Questions. We frame our study in the context
of multitasking across GitHub projects, i.e., switching back
and forth between multiple projects that one contributes to,
within a short period of time (our operationalization below is
one week). Our study was guided by two research questions.
First, we seek a deeper understanding of multitasking and
its effects for software developers active on GitHub.

RQ1. What are the trends of, reasons for, and ef-
fects of multitasking and focus switching on devel-
oper productivity in GitHub?

Second, having identified the important multitasking and
focus switching effectors on programmer productivity, we
proceed to investigate how these dimensions interact, and
which tradeoffs between them exist.

RQ2. Are there limits on multitasking (and what are
they) before productivity is impacted?

3. METHODS
To answer our research questions, we followed a mixed-

methods approach characterized by a sequential explana-
tory strategy [15]. We analyzed development activity and
perceptions of prolific GitHub developers. We combined:
(1) an analysis and regression modeling of repository data,
to quantitatively examine the effects of multitasking and fo-
cus switching on productivity; and (2) a user survey, to gar-
ner additional qualitative insight into the developers’ per-
ceptions of multitasking, focus switching, and their effects.

3.1 Data Set
Prolific Developers. We utilized a GitHub dataset col-
lected during prior work that contains information on prolific
developers with a long and active contribution history [10].
Such developers were identified using GHTorrent [19], as
those with: at least 5 years between their earliest and latest
recorded commits; and at least 500 commits in total, made
to at least 10 different non-fork repositories. The dataset
contains details about the date, size (LOC added/removed),
and contents of all commits authored by 1,255 developers
across 58,092 public repositories accessible on GitHub at
the time of mining. Commit data was obtained by cloning
each repository locally and parsing its git logs, and was used
for our repository analysis. Multiple aliases used by a single
developer were resolved using a series of heuristics [54] (we
found 395 developers, or 31.5%, with two or more aliases;
the maximum number of aliases per developer was eight).
The languages of source code files were determined using
filename extensions and some contextual information [10].

groonga_gcs.groonga.org

groonga_groonga

groonga_gcs

test−unit_test−unit

test−unit_test−unit−rails

mroonga_homebrew

clear−code_cutter

groonga_grntest

groonga_groonga.org

1 2 3 4 5 6

groonga_*

test−unit_*

mroonga_*

clear−code_*

1 2 3 4 5 6

Figure 1: Left : Sample from one developer’s daily contribu-
tions during a week in 2012. Right : Aggregation of the data
into projects. The x-axis is the day index.

In addition, we invited developers in the most active three-
quartiles (by total count of days active) for the user survey.

Conceptualization of a Project. Since our analysis fo-
cuses on multitasking across projects, we need to conceptu-
alize how we define the boundaries of a software project. The
naive approach would be to consider each GitHub reposi-
tory as its own separate project. However, we observed that
in some cases, software projects are organized into multi-
ple separate repositories on GitHub.1 Such repositories
are conceptually and technically related, or even interde-
pendent [7]. It is arguably less costly to switch between
such related repositories (in terms of context switches) than
other, less related repositories on GitHub.

To account for this technicality, we conservatively group
all repositories owned by the same GitHub user or hav-
ing exactly the same name2 into sets of repositories, which
we hereafter refer to as projects. All data about individual
contributions to these repositories is then correspondingly
aggregated at project level. This transformation ensures
that we do not overestimate the number of focus switches
during short time intervals. For example, the left part of
Figure 1 depicts a sample from a developer’s daily activity
across different repositories in a week in 2012 (a day [col-
umn] – repository [row] cell is highlighted if the developer
has contributed commits to that repository that day; days
without any activity have been omitted). In total, the devel-
oper has contributed commits to 9 different repositories over
the course of that week. On the busiest day, she contributed
to 4 of these. The resulting aggregation of this data, using
our conceptualization of a project, depicted in the right part
of Figure 1, shows contributions to only 4 projects.

Note that our definition of project as a collection of repos-
itories owned by the same GitHub user is broader than the
definition of project as a main repository together with all
its forks, proposed in the literature [25].

3.2 Multi-project Multitasking Productivity
For the quantitative analysis, we developed a model to

investigate the relationship between outputs produced per
unit time (as a proxy for productivity) and a multitude of
factors relating to multitasking and focus switching. Here
we describe the factors and the model itself.

3.2.1 Temporal Resolution
An important question when studying multitasking and

focus switching is what time interval to consider. During
a longer period of time, be it objective (e.g., week, month,
year) or context-dependent (e.g., project duration, length

1e.g.,, Ruby Standard Library https://github.com/rubysl
2Repos are identified by the user_login/repository_name stub.

gotcha_*

*_zope

plone_*

xmirror_piwigo

1 2 3 4 5 6

sm_*

wayneeseguin_*

rvm_rvm−site

rubinius_rubinius

1 2 3 4 5 6

Figure 2: Two developers contributed to 4 projects in a
given week. Left : Sequentially; Right : Multitasking.

of employment, major release), a developer may experience
many focus switches without her necessarily also “juggling”
many tasks over a shorter interval (e.g., hour, day, working
session). For example, suppose Alice and Bob both work on
four different projects in a given week, and are free to sched-
ule their tasks on each of the projects. They both interleave
their tasks but in different ways. Each day, Alice only inter-
leaves tasks on a single project, so she never works on more
than one project in a day. Bob interleaves his tasks such that
he contributes to multiple projects each day. When viewed
at this resolution, both switch contexts (focus) between their
four projects over the course of a week.

We modeled the interplay between focus switching at two
temporal resolutions—daily and weekly,3 and using different
measures, as described next.

3.2.2 Multitasking Dimensions
Projects per day. At the finest temporal resolution (day),
we measured multitasking activity using the number of dif-
ferent projects contributed to that day. Contributions are
measured by commits. Clearly, this represents a lower bound
on the number of switches per day: a developer contributing
to k projects in one day has to switch focus at least k times
that day.4 Similar count-based metrics are used in other
studies to represent task switching [1].

At the coarsest temporal resolution (week), we used the
average number of projects per day (AvgProjectsPerDay)
as an aggregate measure of multitasking, as per [4] (inactive
days excluded). For example, if Alice was active for 6 days
during a particular week, with the distribution of projects
day1: 2 different projects; day2: 3; day3: 1; day4: 1; day5: 3;
and day6: 2, then we say that Alice contributed to (2 + 3 +
1 + 1 + 3 + 2)/6 = 2 projects per day on average that week.

AvgProjectsPerDay captures the distinction between de-
velopers who, over the course of a week, tend to work on
projects sequentially day-to-day (AvgProjectsPerDay=1 in
Figure 2 left), and those who interleave contributions to
multiple projects each day, i.e., multitask (AvgProjectsPer-
Day=2.2 in Figure 2 right).

Weekly Focus. While effective at identifying periods of se-
quential and interleaved contributions, the AvgProjectsPer-
Day measure is not useful to distinguish how evenly develop-
ers divide their attention among their projects. This differ-
entiation is important because it has been found that more
narrowly focused developers have less cognitive burden, re-
sulting in higher productivity and quality [45, 57]. For ex-
ample, Alice and Bob both contributed to 4 projects one

3One week is considered a relevant period in software devel-
opment [37]. For convenience, our two temporal resolutions
both use objective time intervals; subjective time intervals
cannot be directly inferred from repository data.
4We assume that going from a neutral state, before con-
tributing to any projects that day, to a state of focus im-
posed by the day’s first project also counts as one switch.

User 5307; 2012−03; FocusEntropy=0.257

4 projects

Fr
ac

tio
n

co
m

m
its

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

User 4931; 2012−03; FocusEntropy=1.850

4 projects

Fr
ac

tio
n

co
m

m
its

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 3: Distributions of commits over projects for two
developers who contributed to 4 projects in a given week.
Both worked sequentially, on not more than one project each
day. Left : SFocus = 0.25. Right : SFocus = 1.85

week, and both worked sequentially (i.e., AvgProjectsPer-
Day=1); however, over the course of that week, Alice focused
her efforts on only one of the 4 projects (Figure 3 left), i.e.,
most of her commits went to one project; in contrast, Bob
contributed more evenly to his 4 projects (Figure 3 right).

From an information theoretic point of view, Alice’s weekly
focus switching behavior is predictable: knowing the histori-
cal distribution of her commits to different projects, one can
accurately predict the object of Alice’s next focus; her next
contribution is more likely to be in a project to which she
contributes frequently. Stated differently, Alice is less likely
to switch focus between projects, since she spends most of
her time contributing to a single project. In contrast, there
is more uncertainty in Bob’s behavior: since he contributes
more uniformly to his projects, he is approximately equally
likely to contribute to any one of them in the next time
period. Bob is more likely to switch focus than Alice.

We measured the uncertainty in a developer’s focus switch-
ing behavior (or the diversity of focus switches) in a given
week using the Teachman/Shannon entropy index, a com-
monly used diversity measure in many scientific disciplines [4,
6, 57]. We denote this measure SFocus, defined as:

SFocus = −
N∑
i=1

pi log2 pi, (1)

where pi is the fraction of the developer’s commits this week5

in project i, and N is the total number of projects this week.
SFocus ranges between 0, when a developer contributes to
a single project that week, and log2N , when a developer
contributes equally (i.e., pi = 1/N) to all N projects.

Similarly, we measured a developer’s language entropy
SLanguage, defined analogously over the L different program-
ming languages of the files touched that week:

SLanguage = −
L∑
i=1

pi log2 pi (2)

SLanguage is a proxy for the overall complexity of one’s con-
tributions to different projects: when writing code in multi-
ple programming languages, in addition to switching focus
between different projects (which involves restoring project-
specific contexts), one also must switch focus between dif-
ferent languages (which may involve different skills).

Day-to-Day Focus. To capture the diversity of focus
switches also at a finer temporal resolution (day), we adapted
the focus shifting networks (FSNs) developed by Xuan et
al. [57] for file-level focus. In our case, for a developer
contributing to N projects in a given week, her FSN is a
weighted directed graph over all projects. Two projects i
and j are connected by an edge if they have been committed
to by the developer on successive, but not necessarily con-

5pi can also be defined in terms of files touched, or LOC
added/removed; all tend to be highly correlated.

clear-code_* groonga_*1
mroonga_*1

test-unit_*

1

1

1

1

5

Figure 4: Corresponding FSN for Figure 1–right.

A

B

1 5 10
A (100)

5

B (100)1

5

A

B

1 5 10

A (100) B (100)6
5

Figure 5: FSNs capture different aspects of one’s focus
switching behavior than AvgProjectsPerDay and SFocus.

secutive, days. Edges point from the earlier-commit project
to the later. The weight of the edge is the number of times
the switch from i to j occurred.6

For example, recall the activity of the developer in Fig-
ure 1–right. Her corresponding FSN is depicted in Figure 4.
There are 4 nodes corresponding to the 4 different projects
she contributed to, over the 6 active days that week: clear-
code_*, groonga_*, test-unit_*, mroonga_*. The day-to-
day switch from clear-code_* to groonga_* occurred once
(day1–day2); the switch from groonga_* to groonga_* is
also recorded, since it occurred 5 times (all subsequent days
except the last); other edges are constructed similarly.

FSNs capture additional information about a developer’s
day-to-day multitasking and focus switching behavior (rela-
tive to AvgProjectsPerDay and SFocus), since they are based
on time-series of commits rather than just aggregate counts.
To illustrate this, consider the two scenarios in Figure 5. Al-
ice and Bob both contribute equally to two projects A and B
(100 commits to each; SFocus = 1), and they never multitask
(AvgProjectsPerDay = 1). However, in the first scenario Al-
ice finishes all her tasks on project A before starting work
on project B, while in the second scenario Bob alternates
between days focused on A, and days focused on B. While
neither AvgProjectsPerDay nor SFocus distinguish between
these scenarios, the corresponding FSNs (shown on the right
in Figure 5) capture the two behaviors.

To leverage this, we considered focus switching as a Markov
process—the next state is completely determined by the cur-
rent one, and we measured the diversity of a developer’s day-
to-day focus switches (as opposed to aggregated at week-
level with SFocus) using Markov entropy [57]. We refer to
the measure as SSwitch, defined as:

SSwitch = −
N∑
i=1

[
pi

∑
j∈πi

p(j|i) log2 p(j|i)

]
, (3)

where πi is the set of outgoing neighbors of node i (e.g.,
πA = {A,B}; πB = {B} for the top FSN in Figure 5); p(j|i)
is the conditional probability that the developer switches
focus from i to j, defined as p(j|i) =

wij∑
k∈πi

wik
; wij is the

weight of the edge i→ j; and pi is defined as above.
SSwitch can be seen as a measure of the repetitiveness of

one’s focus switches from one day to the next: the lower

6Xuan et al. [57] used slightly different weights, including
the number of files changed in a commit in the computation.
Our definition reduces the collinearity with commit size.

A

B

1 5 10

A (100)

11

B (100)11
11

11

Figure 6: Example of a repetitive day-to-day behavior.

the value, the less repetitive one’s day-to-day behavior is.
Bob (Figure 5–bottom; SSwitch = 0) has the least repeti-
tive day-to-day switches: he never contributes to the same
project on two consecutive days. To illustrate the extreme
opposite, consider the example in Figure 6, where Charlie
contributes to exactly the same projects A and B on consec-
utive days (SSwitch = 2). Alice’s behavior (SSwitch = 0.325)
is in between the two extremes.

3.2.3 Regression Analysis
We modeled the variability in outputs produced (i.e., LOC

added) per unit time—our productivity proxy, as dependent
on control measures and the three dimensions of multitask-
ing: projects per day, weekly focus, and day-to-day focus.
For each developer, our data consists of measurements of the
different variables across multiple multitasking weeks (only
weeks with Projects > 1 were modeled).

As customary in regression modeling with skewed predic-
tors, as some of ours are, we first removed outliers. When-
ever one of our variables x was well fitted by an exponen-
tial distribution, we rejected as outliers values that exceeded
k(1 + 2/n)median(x) +θ [43], where θ is the exponential pa-
rameter [47], and k is computed such that not more than
0.5% of values are labeled as outliers, for each variable. Ta-
ble 1 presents summary statistics for our filtered data set.

Then we fit a linear mixed-effects model with a random-
effects term for developer. This allows us to capture developer-
to-developer variability in the response (LOC added), (e.g.,
some developers being naturally more productive than oth-
ers), rather than assessing the contributions of specific devel-
opers, which we are less interested in. Additionally, we allow
for deviations in slope of a developer’s time trend from the
population values (i.e., we allow for the possibility that, for
example, developers with higher initial productivity may, on
average, be less strongly affected by time passing). We also
tested, but found insignificant, the inclusion of a random-
effect term for the time window in which the measurement
was taken, to capture longitudinal, week-to-week variability
(e.g., some weeks developers may be more productive due
to other, unobserved variables). All other variables were
modeled as fixed effects. We used multiple linear mixed-
effects models, as implemented in the functions lmer and
lmer.test in R. Coefficients are considered important if
they were statistically significant (p < 0.05). Their effect
sizes are obtained from ANOVA analyses. We evaluate our
model’s fit using a marginal (R2

m) and a conditional (R2
c) co-

efficient of determination for generalized mixed-effects mod-
els [23, 36], as implemented in the MuMIn package in R: R2

m

describes the proportion of variance explained by the fixed
effects alone; R2

c describes the proportion of variance ex-
plained by the fixed and random effects together.

To check collinearity among the predictors we use the VIF,
or variance inflation factor; all were below 4, except for those
between the interaction terms and their comprising factors,
which is expected. We conclude collinearity between our
variables is not an issue. To ensure compliance with lmer’s
modeling assumptions, we also checked the QQ-plot for our
model, which showed good match with a normal distribu-

Table 1: Summary statistics for week-level data (78,552
rows; 1,193 developers; outliers removed).

Statistic Mean St. Dev. Min Median Max

GlobalTime 1, 142.76 74.24 991 1, 150 1, 263
UserTime 308.05 194.12 1 271 2, 307
Repositories 3.70 2.22 2 3 18
Projects 2.57 0.98 2 2 9
DaysActive 3.98 1.63 1 4 7
Languages 3.19 1.43 1 3 14
Commits 23.89 30.06 2 15 943
FileTouches 88.56 174.31 2 39 2, 737
LOCAdded 4, 151.36 15, 691.15 1 635 265, 702
LOCDeleted 2, 282.19 9, 217.39 0 247 148, 977
SLanguage 0.82 0.52 0.00 0.84 2.92
AvgProjectsPerDay 1.44 0.48 1.00 1.33 6.00
SFocus 0.92 0.44 0.02 0.92 3.01
SSwitch 0.64 0.53 0.00 0.69 2.83

tion. The residuals between the observed and model fitted
values for LOC added showed no difference in variance vari-
ability across the range.

The following describes our regression variables:
Response. Our response is LOCAdded, as a measure of
outputs produced per unit time (proxy for productivity).
It sums the count of lines of code added per commit, over
all commits by a developer in a given week. We also ex-
perimented with Commits and FileTouches. All are highly
correlated (rho ' 0.82 in both cases).

Main predictors. We include AvgProjectsPerDay (Mul-
titasking), SFocus (Weekly Focus), and SSwitch (Day-to-
Day Focus), discussed above, and their interactions.

Controls. Our controls are:
• GlobalTime: Week index of the current week, with

respect to 1990-01-01 (chosen arbitrarily for simplic-
ity). Controls for potential generic environment changes.
• Projects: Total number of projects contributed to in

a given week.
• Languages: Number of different programming lan-

guages across all files touched that week.
• SLanguage: Controls for the overall “linguistic” com-

plexity of one’s contributions.
• UserTime: Per developer index of the current week,

relative to one’s first ever recorded GitHub contribu-
tion. Controls for changes in developer experience with
time, that may have affected individual productivity.

3.2.4 Hypothesis Testing
To test for a difference in the medians between two popu-

lations we use the non parametric Wilcoxon-Mann-Whitney
test, for unpaired samples, and the Mann-Whitney paired
test for paired samples. We use the p-values to determine
statistical significance, and supplement those with the Hodges-
Lehmann point estimate for effect sizes, ∆̂. We also use the

multiple contrast test procedure T̃ [28] for Tukey-type con-
trasts at 95% confidence level, to distinguish significant from
non-significant differences between all pairs of distributions.

3.3 User Survey
We sent an online survey to 851 GitHub users selected

from the set of prolific developers described earlier. The sur-
vey included multiple choice, Likert scale, and open-ended
questions. We asked users about their software development
experience in general, and with GitHub; which factors in-
fluence their contributing to new repositories; what makes

Median (AvgProjectsPerDay)

D

ev
el

op
er

s

1.0 1.5 2.0 2.5 3.0

0
50

15
0

25
0

Figure 7: Distribution of median(AvgProjectsPerDay).

them switch between projects; and their perceptions of the
impacts of contributing to multiple projects.7 We received
128 responses (15% response rate). We iterated through the
open-ended responses using grounded theory methods [12],
to categorize them and identify themes. The survey partic-
ipants reported development experience was 17.2 years on
average (median 15; range 7 to 40), while their GitHub ex-
perience was 5.9 years on average (median 6; range less than
1 to since GitHub was founded).

4. RESULTS

4.1 RQ1: Multitasking, summarized.

4.1.1 Amount of Multitasking
Do developers multitask? We examined developers’ com-
mit activity and also asked survey participants to report the
number of projects they contribute to in an average day
and week. From the repository analysis, we found that
multitasking across projects over the course of a week is
not uncommon: developers contributed to multiple projects
in 37% of the developer–weeks in our dataset (or 78,562
out of 132,277). The answer is not quite as clear for daily
multitasking. Consider the distribution of developers’ me-
dian AvgProjectsPerDay (Figure 7): for each developer,
the median is computed across all weeks when they con-
tributed to multiple projects. For example, a developer with
median = 1 contributes to a single project per day on av-
erage, at least half of the weeks (since AvgProjectsPerDay
cannot be smaller than 1 by construction), i.e., she has a
tendency to work sequentially. The distribution is right-
skewed (γ1 = 3.08). Even when contributing to multiple
projects during a week, some developers still frequently fo-
cus on only few projects each day: 15% (183 out of 1,193)
had median = 1; 95% (1,129 out of 1,193) did not contribute
(on average) to more than 1.5 projects each day. Still, al-
most all developers (98%; 1,165 out of 1,193) contributed to
multiple projects per day at least once.

Considering all projects, not just those hosted on GitHub,
our survey participants reported contributing to an average
of 2.7 projects per day (median 2; range 0–10). Over the
course of a week, respondents stated that they contribute to
an average of 6 projects (median 5; range 0–30).

Does within-day multitasking scale with the num-
ber of projects per week? We investigated whether con-
tributing to more projects each week is also associated with
contributing to more projects daily (therefore with more
within-day focus switches), as one would expect. Figure 8
summarizes the distribution of AvgProjectsPerDay for dif-
ferent values of Projects (each beanplot shows the distribu-

7A complete list of questions is available at http://kblincoe.

github.io/survey/Focus_Shifting_Survey.pdf.

1
2

5

2 3 4 5 6 7 8 9

Total projects per week

A
vg

P
ro

je
ct

sP
er

D
ay

Figure 8: Beanplots showing the distributions of AvgPro-
jectsPerDay, for different values of Projects. The solid hori-
zontal lines represent the medians in each group. The dotted
horizontal line is the overall median. Log y-axis.

2%

10%

9%

6%

20%

90%

76%

71%

69%

48%

8%

14%

20%

25%

32%

supported by my organization
pieces of a bigger puzzle

share code dependencies

I know the developers
just things I am interested in

100 50 0 50 100
Percentage

Response Strongly disagree Disagree Neutral Agree Strongly agree

Figure 9: Reasons for contributing to multiple projects. Sur-
vey responses on how projects switched between are related.

tion of AvgProjectsPerDay for all users over all weeks). Our
finding is that developers do significantly more daily context
switches as they participate in more projects per week. All

groups are significantly different pairwise using the T̃ [28]
procedure at 95% confidence level, and higher Projects cor-
responds to higher AvgProjectsPerDay. For example, devel-
opers contributing to a median of 5 projects per week switch
between a median of 2 each day, although in fact they could
have focused on only one each day.

4.1.2 Reasons for Multitasking
Our survey investigated reasons for working on multiple

projects. We asked the respondents to indicate, using a
five-point Likert-type scale, their agreement to a number of
statements about how the projects they contribute to are
related. As shown in Figure 9, interdependencies, personal
interest, and social relationships were all stated as strong
reasons for contributing to multiple projects. Participants
were also able to provide other ways the projects they con-
tribute to are related: common responses were that they are
an end user of the software tool and want to fix bugs im-
pacting it, and that they contribute to a mix of projects due
to their job as well as their personal interests.

We also asked about reasons for switching between projects
when working on multiple projects. The strongest were all
related to a need being identified in another project, ei-
ther because of dependencies, newly created issues, or a re-
quest from another developer. The summarized responses
are shown in Figure 10. Again, there was space for partic-
ipants to describe other ways they schedule their work on
multiple projects. The most common write-in answer, men-
tioned by five respondents, was that they simply liked to
change focus for the sake of working on something different.
For example, one participant said “I find it easier to produce
quality code if I break up long stretches working on a single
codebase with time spent on a completely different problem.
It freshens up the mind.” [P57] This response indicates that
increased motivation could be a positive reason to multitask.

4.1.3 Productivity Effects
Is multitasking associated with more outputs pro-
duced per unit time? As a preliminary quantitative

2%
4%
15%
24%
24%
41%
63%
63%

91%
82%
70%
51%
47%
37%
15%
14%

7%
14%
15%
24%
30%
22%
23%
23%Tasks determined by someone else

Became aware of a new issue
Received request from a developer

Code dependency

I don't know how to finish my task
Waiting for other developers

Became interested in new project
Completed everything I intended

100 50 0 50 100
Percentage

Response Strongly disagree Disagree Neutral Agree Strongly agree

Figure 10: Reasons for switching between projects. Sur-
vey responses on why developers switch from one project to
another when working on multiple projects.

1
10

0
10

00
0

Non−multitasking weeks Multitasking weeks

LO
C

A
dd

ed

(1155 users; 20289 weeks) (1165 users; 58263 weeks)

Figure 11: Beanplots comparing the distributions of LO-
CAdded during periods of sequential working (left) and mul-
titasking (right). Solid horizontal lines: medians in each
group. Dotted horizontal line: overall median. Log y-axis.

analysis, we found that more focus switches are associated
with higher LOCAdded. Splitting the data into two groups,
weeks of sequential work (AvgProjectsPerDay=1) and weeks
with multitasking (Figure 11), the WMW rank-sum test re-
veals that periods of multitasking are more productive in
terms of LOCAdded per week (p < 2.2e-16; ∆̂ = 379).

Still, this analysis does not consider many confounds. As a
refinement, we turn to the multiple regression analysis. Ta-
ble 2 shows the effects of our independent and control vari-
ables for the multitasking productivity model; the response
is log(LOCAdded). In addition to the model coefficients and
corresponding standard errors, the table shows the sum of
squares, a measure of variance explained, for each variable.
All predictors have been z-transformed to reduce potential
collinearity in the interaction terms. The statistical signif-
icance is indicated by stars. The model fits the data well;
it explains 35% of the variability in the data using only the
fixed effects (R2

m = 0.35), and 55% when considering both
the fixed and random effects (R2

c = 0.55).
We start by discussing the effects associated with our con-

trols. As expected, Projects and Languages have significant,
positive effects. Developers who contribute to more projects
and who use more programming languages are associated
with more lines of code added per week. Together, these
two effects explain about 60% of the variance explained.

More interestingly, SFocus has a strong, negative effect,
accounting for 12% of the variance explained. Recall that
SFocus captures a developer’s overall project focus at week
level (the lower the value, the more of one’s time goes into
a single project; the higher the value, the more evenly one
divides their attention across projects). Developers keeping
fewer projects as their focus, rather than spreading them-
selves thin, are associated with more LOC added per week.
SLanguage paints a similar picture: focusing on fewer lan-
guages requires less context switching between them, and is
associated with more LOC added per week.

AvgProjectsPerDay has a significant positive effect on LO-
CAdded (1% of the variance explained). More within-day
multitasking is associated with more LOC added per week.

Coeffs (Errors) Sum Sq.
(Intercept) 0.069 (0.012)∗∗∗

GlobalTime −0.037 (0.005)∗∗∗ 15.71∗∗∗

Projects 0.263 (0.006)∗∗∗ 2566.87∗∗∗

Languages 0.549 (0.004)∗∗∗ 11505.20∗∗∗

SFocus −0.300 (0.004)∗∗∗ 2757.75∗∗∗

SLanguage −0.231 (0.003)∗∗∗ 2354.39∗∗∗

AvgProjectsPerDay 0.046 (0.004)∗∗∗ 215.29∗∗∗

SSwitch 0.225 (0.004)∗∗∗ 2255.09∗∗∗

Projects:SFocus 0.032 (0.003)∗∗∗ 0.16∗∗∗

Languages:SLanguage −0.045 (0.002)∗∗∗ 345.96∗∗∗

Projects:SLanguage −0.021 (0.003)∗∗∗ 68.66∗∗∗

Projects:AvgProjectsPerDay −0.024 (0.003)∗∗∗ 128.60∗∗∗

SLanguage:AvgProjectsPerDay 0.026 (0.003)∗∗∗ 59.86∗∗∗

Projects:SSwitch −0.104 (0.003)∗∗∗ 404.80∗∗∗

AvgProjectsPerDay:SSwitch 0.058 (0.003)∗∗∗ 203.12∗∗∗

SLanguage:SSwitch −0.029 (0.003)∗∗∗ 35.99∗∗∗

AIC = 171919; BIC = 172105; LogLik = -85939
Num. obs. = 78552; Num. groups: fUserID = 1193
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table 2: Multitasking productivity model. The response is
log(LOCAdded) per week. R2

m = 0.35. R2
c = 0.55.

Day-to-day focus switching (SSwitch) also has a strong, sig-
nificant effect (10% of the variance explained). Recall that
SSwitch captures the diversity of day-to-day focus switches
(higher values indicate more repetitive behavior). The pos-
itive coefficient suggests that repetitive, predictable day-to-
day switches are associated with more LOC added per week.
Psychology research suggests that repetitive work is asso-
ciated with lower levels of arousal [51] and decreased pro-
ductivity, with switching tasks being one source of stimula-
tion [24] to counteract this effect [51]. Our result suggests
that switching between projects on consecutive days is more
“expensive” than it is stimulating: a more repetitive day-to-
day work pattern is associated with more outputs produced.

4.1.4 Perceived Impacts of Focus Switching
While our repository analysis is limited to LOCAdded per

week, our survey responses touch also on other impacts.

Positive Impacts. We asked developers about the impacts
of contributing to multiple projects in parallel (responses
summarized in Figure 12). The impact with the highest
level of agreement (47%) was that contributing to multi-
ple projects increases the chances of each project succeed-
ing. There was a weak correlation between the number of
projects a developer reported contributing to each week and
their perceived impact of this behavior on project success
(rho = 0.25, p = 0.005). This shows that the more cross-
project focus switching a developer does, the more they be-
lieve this will increase the project’s success. This could in-
dicate that some developers, especially those who do mul-
titask frequently, are aware of the knowledge transfer ben-
efits [29]. In fact, many respondents described this bene-
fit, e.g., “Working on different projects, especially when the
ecosystem (programming language, runtime environment)
varies greatly, increases the chance to take advantage of
things learned from one project in another.” [P7]

40% of respondents also agreed that when working on mul-
tiple projects they are able to resolve more issues. Respon-
dents noted several reasons for this, such as the reduced wait
time when working on multiple projects. For example, “I can
switch to another project when I get stuck and need some
time to work out a good solution” [P96], and “I don’t get
blocked [waiting] on a dependency (by contributing to the

15%

23%

29%

31%

34%

52%

47%

40%

33%

29%

23%

5%

37%

36%

37%

40%

43%

43%

feel more productive
contribute more code overall

review more pull requests

resolve more issues

introduce fewer bugs

increase project success

100 50 0 50 100
Percentage

Response Strongly disagree Disagree Neutral Agree Strongly agree

Figure 12: Perceived impacts of multitasking. Survey re-
sponses on the impacts of contributing to multiple projects
in parallel (compared to focusing on fewer projects).

Day Week
Projects > 1 1 U > 2 1-2 U
n 102 19 104 17
Feel more productive 0.11 -0.37 1242∗ 0.13 -0.59 1269.5∗∗

Contribute more code 0.02 -0.63 1377∗∗ 0 -0.59 1219∗∗

Review more pull reqs -0.04 -0.68 1348.5∗∗ -0.05 -0.71 1236∗∗

Resolve more issues 0.23 0.05 1091.5 0.27 -0.24 1177∗

Introduce fewer bugs -0.49 -0.74 1144 -0.49 -0.76 1084
Increase project success 0.43 -0.05 1259∗ 0.46 -0.29 1309.5∗∗∗
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table 3: Impacts of multitasking segregated based on re-
spondents who reported multitasking (>1 project per day or
>2 projects per week) compared to all other responses. Ta-
ble shows the mean response (and Mann-Whitney U) where
responses were coded as follows: strongly disagree (-2), dis-
agree (-1), neutral (0), agree (1), strongly agree (2).

dependency [myself]).” [P6] Other positive impacts noted in
the open-ended responses include an increased social net-
work and reduced overall effort, for example, due to fixing a
bug in the correct location rather than implementing multi-
ple workarounds in many dependent projects.

Negative Impacts. However, participants were not very
positive about the effects of multitasking on the quality of
their code: only 5% agreed that they introduce fewer bugs
when switching focus. In the open-ended responses, the
most commonly cited negative impact was related to the
cost of context switches; e.g., one participant stated “Work-
ing on multiple projects also requires more ‘context switch-
ing’ mentally, which can be a drag on productivity.” [P107]

Confusion. For three of the statements relating to the im-
pact on productivity (“contribute more code”—the response
variable we studied also quantitatively; “review more pull
requests”; and “feel more productive”), there was a high
amount of variance in the responses: some believe they are
more productive while working on multiple projects, while
nearly as many believe that they are not. We did observe
a difference in responses based on how many projects de-
velopers reportedly contribute to. Comparing the responses
of those who switch focus across many projects, with those
that do not (1 project per day, or 1-2 projects per week), we
find that the more frequent focus switchers are more likely
to report positive benefits from this multitasking (Table 3).

4.2 RQ2: Limits on multitasking.
4.2.1 Quantitative Analysis

While the discussion above paints a general picture of the
directionality of the various multitasking effects on outputs
produced per unit time, the model in Table 2 also yields in-
teresting two-way interactions. We illustrate the interpreta-
tion of such interaction terms with the example Projects—

1 2 3 4 5 6

Interaction Projects : AvgProjectsPerDay

AvgProjectsPerDay

lo
g(

LO
C

A
dd

ed
)

Projects = 4
β=0.04

min(Projects) = 2

β=0.24 max(Projects) = 9

β=−0.46

Figure 13: Interaction Projects (week) : AvgProjectsPerDay

AvgProjectsPerDay. Keeping all other variables constant,
the interaction can be described by:

LOCAdded =α1 · Projects + α2 ·AvgProjectsPerDay

+ α3 · Projects ·AvgProjectsPerDay, (4)

where α1, α2, and α3 are the coefficients in the model.
To understand this interaction, we follow the standard

practice of varying one term while holding the other con-
stant, and vice versa. For example, fixing Projects allows us
to examine the effects of increasing AvgProjectsPerDay on
the response (what happens to LOC added per week as there
is more daily multitasking?), for different levels of Projects.
We illustrate this process in Figure 13, where the two re-
gression lines shown in black correspond to the extremes of
Projects (2 and 9 in our data set). When Projects is at
its lowest (2), increasing AvgProjectsPerDay is always as-
sociated with an increase in the response, since the slope is
positive (β = 0.33). In other words, more daily multitasking
is associated with more LOC added per week, for developers
that only take on 2 projects per week. At the other end of the
scale, when Projects = 9, AvgProjectsPerDay is always asso-
ciated with a decrease in the response, since the slope is neg-
ative. In other words, the more daily multitasking, the fewer
LOC added per week, if developers take on too many differ-
ent projects that week. Resolving α2+α3Projects = 0 allows
us to estimate the point of diminishing return, i.e., Projects
= 4 (horizontal regression line shown in gray). Combining
the two findings, we conclude: higher average daily multi-
tasking is associated with more outputs produced per week
(albeit with diminishing returns), as long as developers don’t
take on more than 4 projects per week.8

Similarly, we express tradeoffs between the other dimen-
sions of multitasking and focus switching by investigating
the interaction between two other pairs: (1) AvgProjectsPer-
Day and SSwitch and (2) Projects and SSwitch.

The interaction between AvgProjectsPerDay and SSwitch

reveals that higher average daily multitasking is associated
with more LOC added per week when one’s day-to-day focus
switching is more repetitive. This suggests that one can han-
dle more complexity each day, as long as one doesn’t have
to also handle more complexity day-to-day.

The interaction between Projects and SSwitch shows that
increasing the weekly total number of projects is associated
with increases in outputs produced, when developers don’t
follow too repetitive day-to-day patterns. This suggests that
taking on many projects can prevent boredom and be benefi-
cial; however, if switching between them becomes too repet-
itive, productivity decreases.

8We find a similar result at month level: increases in Avg-
ProjectsPerDay are associated with increases in LOCAdded
per week, below 5 projects per month in total.

45%
10%
37%

15%
45%
31%

40%
45%
32%

30%
20%
37%

10%
37%
31%

60%
44%
32%

35%
24%
39%

5%
32%
22%

60%
44%
39%

20%
20%
26%

40%
49%
34%

40%
32%
40%

45%
49%
54%

5%
5%
5%

50%
46%
41%

10%
10%
22%

40%
52%
47%

50%
38%
31%

feel more productive

contribute more code overall

review more pull requests

resolve more issues

introduce fewer bugs

increase project success

Want fewer
Want more
Want same

Want fewer
Want more
Want same

Want fewer
Want more
Want same

Want fewer
Want more
Want same

Want fewer
Want more
Want same

Want fewer
Want more
Want same

100 50 0 50 100
Percentage

Response Strongly disagree Disagree Neutral Agree Strongly agree

Figure 14: Survey responses on the impacts of multi-
tasking, grouped based on the respondents’ desire to in-
crease/decrease multitasking. Those who wish to increase
multitasking are more positive about the benefits.

4.2.2 Developer Perceptions on Limits
Complementary to this repository analysis, we asked the

survey respondents if they would prefer to contribute to
more projects, fewer projects, or their current number of
projects. Participants are most likely to want to increase
the number of projects they contribute to. Only 14.6% of
respondents indicated that they would prefer to contribute
to fewer projects (46.9% to more; 38.5% current amount).

However, a Spearman’s rank correlation test shows the
number of projects a developer already contributes to in an
average day and week do not correlate with their desire to
contribute to more, fewer, or the same number of projects
(day: rho = 0.10, p = 0.29; week: rho = 0.01, p = 0.86).
Developers who contribute to the most projects are no more
likely to want to contribute to fewer and vice versa. This
could imply that developers do not have a good sense of
when to stop multitasking, despite the negative effects to
productivity outlined by theory and confirmed by our model.

However, we find that participants who want to contribute
to more projects are more optimistic about the impacts of
multitasking. The exception is the impact to code qual-
ity (bugs introduced), to which all participants responded
equally negatively. Figure 14 shows the survey responses re-
lating to the impacts of multitasking, grouped by the partic-
ipants’ reported desire to contribute to more, fewer, or their
current number of projects. For each statement, three bars
show the aggregated responses for each of these three groups
of participants (want to contribute to more/fewer/same num-
ber of projects). The responses for the “want more” group
are skewed to the right compared to the other two groups
(for all statements other than“introduce fewer bugs”), show-
ing the responses from this group are more positive.

5. DISCUSSION
5.1 Implications for Software Practice

We found that developers do a significant amount of mul-
titasking across projects over the course of a week. Devel-

opers indicated that the most common reason for this mul-
titasking is the interrelationships between projects. Focus
switches often occur because of a need identified on another
project, indicating that such focus switching is not planned,
but occurs because of necessity.

Multitasking is beneficial. Yet, we found that despite
these unplanned interruptions, developers who switch focus
across projects generate more outputs than those who do
not. Switching projects allows developers to make more ef-
ficient use of their time when one project reaches a lull, and
provides them with opportunities for learning and knowledge
transfer, as discussed in the Background section. However,
perceptions towards multitasking and its effect on produc-
tivity are varied. Those who do multitask are more likely to
believe multitasking can be beneficial. Software teams could
benefit from practices and tools that support team/work as-
signment that account multitasking.

There are limits on multitasking. However, we found
that limits exist on the amount of focus switching one can
participate in before their productivity begins to decline.
Yet, developers lack a good sense of when to stop multitask-
ing. Nearly half of all survey participants would prefer to
contribute to more than their current number of projects.
We saw no differences in response based on the number of
projects a developer already contributes to, indicating they
do not seem to be aware of the limits of multitasking. Hence,
developers could benefit from tools which predict and notify
of approaching such limits based on their work patterns.

5.2 Research Agenda
While our investigation resulted in significant new insights

on multitasking and focus switching across projects, there
are still many unanswered research questions, opening some
interesting avenues for future research.

Predicting productivity impacts. Our model can iden-
tify the effects of various features of multitasking on devel-
oper productivity. A logical next step would be to use these
models to predict the productivity of individual develop-
ers based on their past contribution patterns. A predictive
model could be the foundation of a tool that can monitor
developer focus switching behavior, and provide warnings to
developers (or their managers) when risky patterns emerge
that could indicate productivity will be negatively impacted.

Further investigation of non-multitaskers. Our sur-
vey participants who reported no or very little multitasking,
were more pessimistic about the impacts of multitasking on
their productivity and project success. Future work can in-
vestigate why developers choose not to multitask. Do non-
multitaskers contribute to projects with fewer dependencies
to other projects, resulting in a reduced need for multitask-
ing? If the projects do not have fewer dependencies, how
do non-multitaskers avoid switching focus when these de-
pendencies necessitate changes in another project? Do they
simply create an issue on that project and wait for someone
else to make the change, resulting in reduced productivity?
The answers to these questions can result in the conceptual-
ization of methods and tools designed to change the percep-
tions and habits of these developers, to promote an increase
in multitasking to reap the associated productivity benefits.

Further investigation of reasons for focus switches.
We identified limits to multitasking. Contributing to more
projects per week is associated with more outputs produced,
as long as developers do not work on too many projects in a

single day. Future work can investigate reasons for this find-
ing. Perhaps the reasons for focus switching is different for
those who contribute to many projects per day, compared to
those who contribute to only a small number of projects per
day. The differences between these two groups may provide
additional insight, revealing which focus switching reasons
are more likely to result in increased productivity. With a
greater understanding of the beneficial focus switches, tools
can be devised to help developers distinguish between the
various interruptions they face.

5.3 Threats to Validity
All developers in our study are highly prolific contributors,

and our survey respondents were self-selected. Thus, our
results may not generalize beyond this research setting. The
thematic analysis of the survey was performed by only one
person, introducing a possible risk of unreliable results.

We define projects by aggregating repositories related by
name. Given the ease with which different projects can
depend on each other on GitHub, determining the exact
boundaries of a project is difficult. Our definition may
overly combine repositories, but we believe it makes context
switches more likely to be between distinct entities. The re-
sults may be different if a coarser or finer grained definition
of project were to be used.

The aliased user identities refer to the original author of
the commit, while the dates chosen are from the committer
fields, which mark when the change was finally added to the
main repository. These fields can be different if the commit
was originally created in a fork. We found the author and
committer to be different in only 1.78% of commits, so we
do not believe this will significantly affect the results.

We considered contributions as commits only. Other types
of contributions could also be considered in future work.

The projects we extracted were based on data from GitHub
and GHTorrent, which limits the generalizability.

Finally, measuring productivity as LOC added per week,
or any other count of user interaction with the artifact, is
certainly somewhat naive and incomplete. However, it is
neither unprecedented nor unjustified by prior research [57].

6. CONCLUSIONS
Programming is multi-faceted, inherently involving context-

switching. With the advent of ecosystems like GitHub, an-
other tier of context-switching becomes possible: switching
between projects. Using a mixed-methods approach (sur-
vey+quantitative analysis of mined data) we study this phe-
nomenon. We find that up to a certain point, switching be-
tween projects is associated with productivity increases; but
beyond that, it appears that overall output of developers
declines. Yet, the survey responses indicate that develop-
ers seem to believe it’s always better to work on ever-more
projects, regardless of how many they already work on! Our
work is actionable: managers and developers can take advan-
tage of our findings to manage both the number of projects
they work on and the intensity of their context-switching.

Acknowledgements
We thank the survey participants. This work is partially
supported by NSF grants 1247280 and 1414172 (BV, CC,
PD, VF), NSERC Canada (DD), and NSFC grants 61273212
and 61572439 (QX).

7. REFERENCES
[1] R. F. Adler and R. Benbunan-Fich. Juggling on a high

wire: Multitasking effects on performance.
International Journal of Human-Computer Studies,
70(2):156–168, 2012.

[2] E. M. Altmann and J. G. Trafton. Memory for goals:
An activation-based model. Cognitive Science,
26(1):39–83, 2002.

[3] J. R. Anderson. Human symbol manipulation within
an integrated cognitive architecture. Cognitive science,
29(3):313–341, 2005.

[4] S. Aral, E. Brynjolfsson, and M. V. Alstyne.
Information, technology, and information worker
productivity. Information Systems Research,
23(3-part-2):849–867, 2012.

[5] E. T. Barr, C. Bird, P. C. Rigby, A. Hindle, D. M.
German, and P. Devanbu. Cohesive and isolated
development with branches. In FASE, pages 316–331.
Springer, 2012.

[6] R. Benbunan-Fich. An entropy index for multitasking
behavior. In ICIS. AIS, 2011.

[7] K. Blincoe, F. Harrison, and D. Damian. Ecosystems
in GitHub and a method for ecosystem identification
using reference coupling. In MSR, pages 202–211.
IEEE, 2015.

[8] J. P. Borst, N. A. Taatgen, and H. van Rijn. The
problem state: a cognitive bottleneck in multitasking.
Journal of Experimental Psychology: Learning,
memory, and cognition, 36(2):363, 2010.

[9] J. P. Borst, N. A. Taatgen, and H. van Rijn. What
makes interruptions disruptive? a process-model
account of the effects of the problem state bottleneck
on task interruption and resumption. In CHI, pages
2971–2980. ACM, 2015.

[10] C. Casalnuovo, B. Vasilescu, P. Devanbu, and
V. Filkov. Developer onboarding in GitHub: The role
of prior social links and language experience. In FSE,
pages 817–828. IEEE, 2015.

[11] M. Cataldo and J. D. Herbsleb. Coordination
breakdowns and their impact on development
productivity and software failures. IEEE TSE,
39(3):343–360, 2013.

[12] J. Corbin and A. Strauss. Basics of qualitative
research: Techniques and procedures for developing
grounded theory. Sage Publications, 2014.

[13] L. Dabbish, G. Mark, and V. M. González. Why do i
keep interrupting myself? environment, habit and
self-interruption. In CHI, pages 3127–3130. ACM,
2011.

[14] L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb. Social
coding in GitHub: transparency and collaboration in
an open software repository. In CSCW, pages
1277–1286. ACM, 2012.

[15] S. Easterbrook, J. Singer, M.-A. Storey, and
D. Damian. Selecting empirical methods for software
engineering research. In Guide to Advanced Empirical
Software Engineering, pages 285–311. Springer, 2008.

[16] S. J. Gilbert and T. Shallice. Task switching: A PDP
model. Cognitive Psychology, 44(3):297–337, 2002.

[17] V. M. González and G. Mark. Managing currents of
work: Multi-tasking among multiple collaborations. In
ECSCW, pages 143–162. Springer, 2005.

[18] A. J. Gould. What makes an interruption disruptive?
Understanding the effects of interruption relevance
and timing on performance. PhD thesis, UCL, 2014.

[19] G. Gousios and D. Spinellis. GHTorrent: Github’s
data from a firehose. In MSR, pages 12–21. IEEE,
2012.

[20] A. Hars and S. Ou. Working for free? Motivations of
participating in open source projects. In HICSS, pages
9–pp. IEEE, 2001.

[21] J. D. Herbsleb and A. Mockus. An empirical study of
speed and communication in globally distributed
software development. IEEE TSE, 29(6):481–494,
2003.

[22] S. Jenkins. Concerning interruptions. Computer,
(11):116–114, 2006.

[23] P. C. Johnson. Extension of nakagawa & schielzeth’s
r2GLMM to random slopes models. Methods in Ecology
and Evolution, 5(9):944–946, 2014.

[24] D. Kahneman. Attention and effort. Prentice-Hall,
1973.

[25] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer,
D. M. German, and D. Damian. The promises and
perils of mining GitHub. In MSR, pages 92–101.
ACM, 2014.

[26] M. Kersten and G. C. Murphy. Using task context to
improve programmer productivity. In FSE, pages
1–11. ACM, 2006.

[27] A. J. Ko, R. DeLine, and G. Venolia. Information
needs in collocated software development teams. In
ICSE, pages 344–353. IEEE, 2007.

[28] F. Konietschke, L. A. Hothorn, E. Brunner, et al.
Rank-based multiple test procedures and simultaneous
confidence intervals. Electronic Journal of Statistics,
6:738–759, 2012.

[29] A. Lindbeck and D. J. Snower. Multitask learning and
the reorganization of work: from Tayloristic to holistic
organization. Journal of Labor Economics,
18(3):353–376, 2000.

[30] G. Madey, V. Freeh, and R. Tynan. The open source
software development phenomenon: An analysis based
on social network theory. In AMCIS, page 247, 2002.

[31] G. Mark, V. M. Gonzalez, and J. Harris. No task left
behind? examining the nature of fragmented work. In
CHI, pages 321–330. ACM, 2005.

[32] J. Marlow and L. Dabbish. Activity traces and signals
in software developer recruitment and hiring. In
CSCW, pages 145–156. ACM, 2013.

[33] J. Marlow, L. Dabbish, and J. Herbsleb. Impression
formation in online peer production: Activity traces
and personal profiles in GitHub. In CSCW, pages
117–128. ACM, 2013.

[34] N. McDonald and S. Goggins. Performance and
participation in open source software on GitHub. In
CHI, pages 139–144. ACM, 2013.

[35] A. N. Meyer, T. Fritz, G. C. Murphy, and
T. Zimmermann. Software developers’ perceptions of
productivity. In FSE, pages 19–29. ACM, 2014.

[36] S. Nakagawa and H. Schielzeth. A general and simple
method for obtaining r2 from generalized linear
mixed-effects models. Methods in Ecology and
Evolution, 4(2):133–142, 2013.

[37] M. B. O’Leary, M. Mortensen, and A. W. Woolley.
Multiple team membership: A theoretical model of its

effects on productivity and learning for individuals
and teams. Academy of Management Review,
36(3):461–478, 2011.

[38] C. Parnin. A cognitive neuroscience perspective on
memory for programming tasks. Programming Interest
Group, page 27, 2010.

[39] C. Parnin and R. DeLine. Evaluating cues for
resuming interrupted programming tasks. In CHI,
pages 93–102. ACM, 2010.

[40] C. Parnin and S. Rugaber. Resumption strategies for
interrupted programming tasks. Software Quality
Journal, 19(1):5–34, 2011.

[41] C. Parnin and S. Rugaber. Programmer information
needs after memory failure. In ICPC, pages 123–132.
IEEE, 2012.

[42] C. J. Parnin. Supporting Interrupted Programming
Tasks with Memory-Based Aids. PhD thesis, Georgia
Institute of Technology, 2014.

[43] J. K. Patel, C. Kapadia, and D. B. Owen. Handbook of
statistical distributions. M. Dekker, 1976.

[44] D. E. Perry, N. A. Staudenmayer, and L. G. Votta.
Understanding and improving time usage in software
development. Software Process, 5:111–135, 1995.

[45] D. Posnett, R. D’Souza, P. Devanbu, and V. Filkov.
Dual ecological measures of focus in software
development. In ICSE, pages 452–461. IEEE, 2013.

[46] C. Rosen. The myth of multitasking. The New
Atlantis, 20(Spring):105–110, 2008.

[47] P. J. Rousseeuw and C. Croux. Alternatives to the
median absolute deviation. Journal of the American
Statistical Association, 88(424):1273–1283, 1993.

[48] J. S. Rubinstein, D. E. Meyer, and J. E. Evans.
Executive control of cognitive processes in task
switching. Journal of Experimental Psychology:
Human Perception and Performance, 27(4):763, 2001.

[49] D. D. Salvucci, N. A. Taatgen, and J. P. Borst.
Toward a unified theory of the multitasking
continuum: From concurrent performance to task

switching, interruption, and resumption. In CHI,
pages 1819–1828. ACM, 2009.

[50] H. Sanchez, R. Robbes, and V. M. Gonzalez. An
empirical study of work fragmentation in software
evolution tasks. In SANER, pages 251–260. IEEE,
2015.

[51] K. H. Teigen. Yerkes-Dodson: A law for all seasons.
Theory & Psychology, 4(4):525–547, 1994.

[52] B. Vasilescu, V. Filkov, and A. Serebrenik.
Perceptions of diversity on GitHub: A user survey. In
CHASE, pages 50–56. IEEE, 2015.

[53] B. Vasilescu, D. Posnett, B. Ray, M. G. J. van den
Brand, A. Serebrenik, P. Devanbu, and V. Filkov.
Gender and tenure diversity in GitHub teams. In CHI,
pages 3789–3798. ACM, 2015.

[54] B. Vasilescu, A. Serebrenik, and V. Filkov. A data set
for social diversity studies of GitHub teams. In MSR,
pages 514–517. IEEE, 2015.

[55] G. M. Weinberg. Quality Software Management, 1:
Systems Thinking. Dorset House Publishing, 1992.

[56] Q. Xuan, P. T. Devanbu, and V. Filkov. Converging
work-talk patterns in online task-oriented
communities. arXiv preprint arXiv:1404.5708, 2014.

[57] Q. Xuan, A. Okano, P. Devanbu, and V. Filkov.
Focus-shifting patterns of OSS developers and their
congruence with call graphs. In FSE, pages 401–412.
ACM, 2014.

[58] F. Zhang, F. Khomh, Y. Zou, and A. E. Hassan. An
empirical study of the effect of file editing patterns on
software quality. Journal of Software: Evolution and
Process, 26(11):996–1029, 2014.

[59] A. Zika-Viktorsson, P. Sundström, and M. Engwall.
Project overload: An exploratory study of work and
management in multi-project settings. International
Journal of Project Management, 24(5):385–394, 2006.

[60] L. Zou and M. W. Godfrey. An industrial case study
of program artifacts viewed during maintenance tasks.
In WCRE, pages 71–82. IEEE, 2006.

