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ABSTRACT
The team aspects of software engineering have been a subject
of great interest since early work by Fred Brooks and others:
how well do people work together in teams? why do people
join teams? what happens if teams are distributed? Re-
cently, the emergence of project ecosystems such as GitHub
have created an entirely new, higher level of organization.
GitHub supports numerous teams; they share a common
technical platform (for work activities) and a common social
platform (via following, commenting, etc). We explore the
GitHub evidence for socialization as a precursor to joining
a project, and how the technical factors of past experience
and social factors of past connections to team members of
a project affect productivity both initially and in the long
run. We find that migration in GitHub is strongly affected
by pre-existing relationships; furthermore, we find that the
presence of past social connections combined with prior ex-
perience in languages dominant in the project leads to higher
productivity both initially and cumulatively. Interestingly,
we also find that stronger social connections are associated
with slightly less productivity initially, but slightly more
productivity in the long run.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Programming Teams

General Terms
Human Factors

Keywords
GitHub, social aspects, onboarding, productivity

1. INTRODUCTION
While coding per se is a solitary activity, software develop-

ment is very much a team sport: people organize into teams,
spontaneously in open source, and by fiat in commercial

software development. In open source the communication
(computer-mediated) and collaboration activities (over ver-
sion control) of software teams can be mined and studied.
Prior research [3, 5, 7] has explored a great many aspects
of how people join, work, and communicate within teams.
Much of this research has been based on abundant data
available from open source project repositories.

Teams, however, rarely exist in a vacuum; software teams
interact with other teams in the same (large) organization,
or within the same geographic area (such as Bangalore, or
Silicon Valley) or those using the same technology platform
(e.g., Android) or competing in the same market (e.g., trading
platforms). These emerging “ecosystems” lead to new trans-
project phenomena, such as migration of skills, technologies,
and people between teams; the building of reputations; and
the rise and decline of projects and individuals. These are
clearly interesting and consequential phenomena; however
the type of ecosystems listed above are difficult to observe
and to study.

Recently, a new opportunity has arisen: the rise of “Web
2.0” software project ecosystems such as BitBucket and
GitHub. These ecosystems provide technical platforms for
social interaction, technical collaboration, and reputation
building. They are exploding in popularity [18], with rapidly
increasing numbers of users and hosted projects. Since there
is a single technical platform for all the projects, it is now
possible to mine an entire ecosystem, and observe important
ecosystem-level phenomena. In this paper, we are specifically
interested in the migration of developers between projects.
GitHub actually facilitates newcomers. The pull-based

distributed software development process (as opposed to
the earlier approach of a centralized repository with limited,
controlled access) makes it a more democratic environment,
where more people from different backgrounds can contribute.
The common, shared technical platform, with single sign-on,
as well as the extensive “social coding” features, facilitate the
discovery of new projects, forging of new social links, and
the opportunity to contribute in a range of ways.

In such a democratic, flat-land playground, do developers
end up following their social links? How do those social links
affect one’s choices when wanting to join projects? Social
capital in settings such as Twitter and Facebook are valuable,
and can even be monetized. How do social connections and
experience affect people’s migrations between projects, and
their technical contributions?

Starting from a dataset comprised of histories of co-
participation in GitHub projects by prolific developers, in
this paper we study the effect of developers’ social links in the



GitHub ecosystem on their choices to join new projects, and
their productivity once they do. In particular, we develop
a measure of the strength of prior social links between a
developer and existing members in a project, based on the
number of developers in that project with whom the person
has already co-participated in other projects. Using that,
and statistical modeling, we find that:

• Developers preferentially join projects where they have
prior social contacts. This affirms prior findings along
the same lines done in other open source settings [13].

• Joining a new project in which there are some prior co-
participants increases the developer’s chances for initial
contribution above baseline by 3.7% to 6.2%; similarly
so for joining a project with dominant languages in
which the developer has made prior contributions.

• Beyond the initial period, a developer’s overall produc-
tivity in the project depends on their prior experience
with the language of the project and their social con-
nections in that project; having both gives a developer
a great advantage in overall productivity, with an in-
crease by 29.5% to 54.3% over baseline.

• However, developers who join environments where they
have prior social connections but no prior language
experience are 9.6% less likely to have cumulative pro-
ductivity above baseline.

• As the strength of social connection increases, it is
associated with a small decrease in productivity in the
initial period, perhaps associated with coordination
overhead between team members. However, stronger
social links indicate higher cumulative productivity.

The rest of the paper is organized as follows. The theory
behind our research and the research questions are in Sec-
tion 2, followed by the methodology in Section 3. The results
and discussion are in Section 4, and threats to validity and
conclusion in Sections 5 and 6, respectively.

2. THEORY

2.1 Team Formation in OSS
Compared to organized, corporate project teams (“fiat

teams”), open source software (OSS) teams tend to be quite
fluid and diverse. Typically, OSS teams consist of a mix
of professional developers and volunteers, often geograph-
ically distributed, with varied demographic features, per-
sonalities, and expertise. Moreover, OSS teams tend to be
self-organized [6], and they are more fluid than their fiat
counterparts. In OSS, teams form and dissolve organically
around each task at hand, with contributors that come and
go as they please (especially the volunteers), resulting in high
turnover [30]. GitHub OSS teams are no different [36].

Prior work on team formation, be it self-organized or fiat,
indicates that it is a deliberate, strategic process, in which
individuals attempt to satisfy personal and group objec-
tives [27]. In self-organized teams, the process is typically
bi-directional, in that individuals seek to join groups that will
enable them to satisfy personal needs, and groups seek mem-
bers that can fit in and will contribute to reaching the groups’
objectives [21]. In OSS, e.g., projects need contributors with
particular skills, while developers who are looking to join

projects are driven by a direct need for the software, enjoy-
ment of the work itself, learning opportunities, or reputation
building [19,20].

However, it is difficult for OSS developers to predict before
joining the extent to which prospective target projects will be
successful and will enable them to maximize the realization of
their goals [13]. Instead, to deal with uncertainty, developers
will rely on other cues when forming impressions about other
developers and projects. Research on self organizing net-
works suggests that people prefer (i) repeated collaborations
(cohesion) over new ones, to benefit from prior interactions,
greater mutual trust, and increased knowledge about each
other’s technical and social skills, and (ii) collaborations with
established (higher status) actors, which increases their own
motivation and their perception of the likelihood of project
success [12, 35]. Teams comprised of members with prior
joint experience can coordinate their efforts and leverage
each other’s expertise more effectively [9,26]. Over time, the
teams will engage in more meaningful interactions, adjust to
the surface-level differences between them, and benefit from
their different cognitive frameworks and value sets (i.e., their
information-processing [31] approaches), thus improving the
team’s efficiency and decision making processes [14].

In OSS, the importance of socialization and social ties for
team formation are well documented. Research suggests that
developers use social ties created during joint participation in
past projects when choosing new collaborators. Specifically,
prior work on SourceForge [13] has found that developers
are more likely to join projects that are initiated by others
with which they have interacted intensely in the past, but
collaborative tie strength with other team members does not
seem to have a significant effect on their choice to join those
projects. We find support for preferentially choosing projects
on GitHub, but we also study how the strength of social
ties influences one’s initial and cumulative productivity after
joining, rather than just the choice of joining.

However, joining an OSS project is itself a complex pro-
cess [32], influenced by a multitude of social and technical
factors. There are also different roles through which a new-
comer can advance in a typical OSS project based on their
level of commitment, commonly referred to as the “onion
model” [44]. Typically, one starts from the periphery by
contributing bug fixes, documentation, small feature im-
provements, and participating in discussions on mailing lists,
and tries to advance through the ranks towards the core,
where they are granted direct access to the project’s source
code repository. Prior work suggests that a congruence of the
newcomer’s social and technical activities is essential for suc-
cessful onboarding in OSS [3, 4, 8, 10, 17, 40]. Sustained, high
quality contributions containing working and well-tested code
are necessary to add technical value to the project, and help
other project members increase their trust in the developer’s
ability to contribute. Similarly, good communication and
social skills signal that the developer can integrate well with
other team members, and can help her advance through the
ranks. The social and technical activities of newcomers, i.e.,
who they talk to, how many social links they develop with
other project members during the onboarding period, how
well they communicate, and how active they are at submit-
ting patches and identifying and fixing bugs, all contribute
to increase one’s chances of advancing through the ranks.

Still, not all team formation attempts are successful. Var-
ious technical and social contribution barriers, including



expectation breakdowns, reception problems, insufficient
community support, and steep learning curves, can impede
newcomers from completing the onboarding process [32,33].
The social environment of the project also plays a role in
team formation in OSS, affecting both the rate at which de-
velopers join a project as well as the chance that a newcomer
will become a long-term contributor [45,46].

2.1.1 Developer Migration in OSS
A special case of team formation in OSS is developer mi-

gration between (interconnected) projects part of a larger
software ecosystem, e.g., Gnome, Apache, GitHub. Despite
the abundance of literature on onboarding of newcomers in
individual OSS projects, very few empirical studies of migra-
tion of developers across projects exist. Weiss et al. [41, 42]
studied mailing list email exchanges between contributors
to Apache projects, and uncovered developer migration pat-
terns within the ecosystem. They found that migration of
developers between different Apache projects is a common
occurrence (i.e., in their data most newly started projects
included at least one large group of developers that migrated
from another Apache project), and that the strength of so-
cial ties influences the migration behavior, with evidence
for preferential attachment (i.e., while many developers will
migrate in small groups, some well-connected developers will
move in large groups). Recently, Mens et al. [24, 25] have
began studying the migration patterns of Gnome contribu-
tors, from the perspective of the ecosystem’s survivability.
In this context, a sudden loss (or intake) of contributors to
projects part of the Gnome ecosystem may be indicative of
an important environmental disturbance, therefore analyzing
effects associated with the intake, retention and loss of devel-
opers at the level of individual Gnome projects may provide
insights into how the ecosystem returned to an equilibrium
after this disturbance.

2.2 Social Coding in GitHub
The propensity of people to form new teams, or migrate to

existing ones, is greatly amplified by technical standards and
platforms. GitHub certainly provides a common distributed
code sharing and versioning platform. The widespread famil-
iarity of developers with systems like git, and the flexible
collaborative processes that it supports, certainly facilitates
contributing to, starting up, and migrating to team projects
in GitHub. However, GitHub does much, much more to
facilitate teams and migration, through the social coding
features it offers. These features allow developers to track
each others’ activities, and thus form detailed impressions of
their social and technical abilities and behavior.

The activities of developers in GitHub (e.g., reporting
bugs, submitting pull requests, commenting) are all not
merely recorded; they can also be “followed” by others, and
readily made available on user-identified“home”pages. These
records provide a valuable perspective on not only the tech-
nical abilities of a person, but also their social skills and
proclivities. Lima et al. [22] build networks of these follow-
ers and also collaborators based on push events of commits
on GitHub. They find that following relations are often
one directional and that small teams are often comprised of
geographically close individuals. Marlow et al. [23] report
that these GitHub records play a key role in how develop-
ers form impressions of each other, based on evaluations of
the work products contributed by others. Brian Doll, in an

interview by Storey [1], claims that “the number one way
of getting a job...right now” is to showcase one’s work on
GitHub; his pitch for GitHub is supported by an article in
CNET [34]. Dabbish et al. [7] report that developers indeed
use these records not only to form impressions of others, but
also manage their own on-line reputations.

These findings suggest that team formation and inter-team
migration are strongly influenced by perceptions formed
through GitHub records; as discussed below, these concepts
inform our research.

2.3 Research Questions
Given that the social aspects of GitHub and the pull re-

quest mechanism lower the barriers to entry for newcomers,
allowing developers to more easily participate in a number
of projects simultaneously, we wish to understand how de-
veloper migration manifests itself in this social environment.
We begin with a question to understand if developers pref-
erentially select to join projects that have on board people
with whom they have prior ties:

RQ1: Do prior social connections matter when de-
velopers join new projects? That is, are they more
likely to join projects in which there are developers
they have already collaborated with in the past?

When a developer joins a project, there are many different
factors that can influence their productivity. Developers’
activity on GitHub will generally rise and fall throughout
their tenure, and not stay constant. If they are involved in
multiple other projects, their existing commitments might
lower the levels of contribution in the new project, simply
because they need to divide their attention between many
different venues.

Additionally, the theories reviewed above suggest that peo-
ple are aware of each other’s technical skills, and teaming
up and collaboration will be influenced by those attributes.
Thus, if a project involves languages with which a devel-
oper has no prior experience, they may not be as productive
initially in the project. Moreover, a developer’s initial pro-
ductivity in a new project may vary depending on their
having significant social connection to the project, based on
prior social links with other developers. We draw from the
theory on teams that social connections are key for future
collaborations. Putting all these into a broader context of
an environment with observables we can control for, we ask:

RQ2: How does the presence of past social connec-
tions, and their strength, influence initial developer
productivity in both familiar (past language experi-
ence) and unfamiliar project environments (no past
language experience)?

Finally, some of those effects may be moderated by time.
As a developer’s familiarity with the project changes, and
they become more invested in it, so will their attitude towards
contributing in that project. Naturally, projects also vary in
popularity over time, and people change focus, as interests
change and social connections develop. Focusing on the
overall productivity of a developer throughout their tenure
with a project, we ask:

RQ3: What is the effect of past experience and
prior social connections on how productive a devel-
oper will be overall in a project?



3. METHODS

3.1 Data Gathering
Although GitHub is presented as a platform for “social

coding”, it is well known that it has numerous inactive or
personal projects, which are disconnected from meaningful
team-based software development [18]. Furthermore, most
GitHub users do not have a sufficiently long record of com-
mits to draw meaningful conclusions about their project-
joining behavior. Therefore, our study focused on prolific
developers who contributed to multiple projects. Using data
from the GHTorrent [11] dump dated 2014/11/1 and our
previously assembled diversity data set [37], we identified an
initial set of 1,274 developers with a long GitHub contri-
bution history. We selected developers active for at least 5
years, and who contributed at least 500 commits to at least
10 different repositories (i.e., projects). We exclude forks as
recommended when mining GitHub [18].

Between them, these developers contributed to 65,280
different projects. To obtain more detailed project data (e.g.,
on the size and contents of each code change) than offered by
GHTorrent’s fast MySQL database, we extract data directly
from each project’s commit logs. We attempted to clone the
main repository for all 65,280 projects in order to obtain
their git logs, and succeeded in 58,170 cases. In cases where
the cloning failed the project no longer existed on GitHub
(their project pages returned “404 Not Found” errors) when
we collected data in November 2014.

From here, we textually parsed all git logs to identify the
files touched in each commit, and what lines were added and
deleted. We retained the full file paths and extensions of all
the files. There were 78 projects that raised an error when
parsing their log files, and were subsequently excluded. In
total, we collected detailed data on 1,255 prolific developers
who together contributed to 58,092 projects.

3.2 User Aliases
When assigning authorship to a commit, we examined

only the author fields contained in the git logs. These fields
identify the developer who is the original author of the code,
and not the committer, who is the person submitting the
commit to the main repository (and may be different from
the author).

Unfortunately, developers may use multiple emails and
user names in their commits; without accounting for possible
aliases, this can lead to contributions from the same individ-
ual being associated with multiple identities. To address this
challenge, we reuse prior results on identity merging from our
GitHub diversity data set [38], wherein we mapped aliases
belonging to the same person to a single entity. The details
of these alias resolution techniques are discussed op. cit.

3.3 Temporal Modeling
Modeling temporal information is complex and can be

challenging to interpret correctly; we adopt a simplified
approach. We approximate developers’ behavior over time
with a sequence of 11 fixed-size time windows. We choose
the beginning of 2009 as the starting point, since GitHub
officially launched on April 10, 2008.1 The first time window,
labelled t0, is different from the other 10. It represents the
cumulative behavior of the developers until the start of 2009,

1https://github.com/blog/40-we-launched

and aggregates the initial habits of developers. The rest
of the time windows, labelled t1 to t10, measure six month
intervals from the start of 2009 to the end of 2013. That is, t1
measures January 1, 2009 to June 30, 2009, t2 measures July
1, 2009 to December, 31, 2009, and so on until December 31,
2013. Each window aggregates the project joining behavior
of the developers during those 6 months.

Finally, when examining the productivity of developers,
we chose projects that were joined between t1 to t9, and not
prior or hence. This guarantees at least 1 year of commit
history for all projects in our productivity studies.

3.4 Language Estimation
We classified each file that had been committed to into

one of 34 language categories. These categories included
31 programing languages and 3 special categories. The 31
programming languages were chosen from the combination
of the top 20 languages on GitHub and the languages that
appear by default in GitHub drop down menus. The three
special categories included an other category for files in less
popular languages and non code files, an ambiguous category
for files which could not be classified correctly, and a special
category for C/C++. This last category is specifically for .h
files in projects that used both C and C++.

To determine the programming language in which a file is
written, we used a mapping from file extensions to program-
ming languages provided by the GitHub linguist project.2

GitHub linguist itself works more precisely than that, in-
corporating file contents with extensions to help identify the
language, but our log file (vs source) parsing limited us to
using only file extensions. As some file extensions are shared
between different types of files, we had to remove ambiguity
using additional contextual information. Knowing which
project an ambiguous file belongs to can assist in selecting
its language. Each project on GitHub has a label for its
main language, so if there was an ambiguous file with an
extension that could be used by this language, we classified it
as such. For instance, .m files can be Matlab or Objective-C
files. However, if the repository is labelled as Objective-C,
we classify this file as such. Additionally, we use the context
provided from other files in the project to resolve ambiguous
cases. If a file type could belong to a set of languages, we
examine the classifications of the other files in the project. If
exactly one of the languages in the set of possibilities exists
within the project, all files in this ambiguous set are classified
as written in this language. This method is conservative:
we would rather ignore an ambiguous file than incorrectly
classify it. Of all files in all projects, only about 1% remained
classified as ambiguous.

3.5 Statistical Modeling
We perform statistical modeling at two levels of granu-

larity. First, we address RQ1 both cumulatively and per
time period, combining all possible determinants of one’s
preferential project joining behavior (e.g., project size, popu-
larity, etc.) into a single choice. Second, we perform a more
fine-grained regression modeling of developers’ productiv-
ity in newly joined projects, taking into account their past
technical experience and strength of social links with other
project members, in order to answer RQ2 and RQ3.

2https://github.com/github/linguist



3.5.1 Modeling Project Joining
From the perspective of a developer looking to contribute to

a new project, one can choose between starting a new project
and joining an existing one. Among prospective projects, the
choice can be between those with prior social connections
and those without (we exclude all projects that the developer
starts, as those necessarily lack any prior connections). We
say that two developers have a social connection if they both
have committed to at least one same project in the past.
Now, a developer has a prior social connection to a project
if there is a social connection between the developer and
a member of the project who has joined at least one day
before.

Since we have temporal data, we test joining preferences
in two ways. First, we test the hypothesis that cumulatively,
over all time windows of observation, a developer chooses to
join projects randomly, irrespective of prior social connections
in them. That is, in aggregate over all time windows, a
developer chooses to join an existing project at random. The
alternative, then, is that the developer preferentially joins
projects with prior social links.

We also look at project joining in a stricter setting: we test
whether a developer prefers to join projects non-randomly
in each of the 10 time periods (i.e., is random joining, the
null hypothesis, rejected for each interval?). In this case, for
each developer we exclude time periods where they either
did not join any projects or did not yet have any prior social
links established.

To test the above null hypotheses, we use the hypergeomet-
ric distribution [28]. Let N be the number of projects that a
developer has not yet joined by the end of our observation
period (i.e., over all time periods between 2009 and 2013), K
be the number of projects among them where the developer
has prior social connections, n be the number of projects that
the developer (eventually) joins, and, finally, k be the number
of projects the developer joined where they have prior social
links. In general, given a set of size N comprised of two
distinct classes of objects, say SUCCESS and FAILURE, the
hypergeometric distribution models the sampling without
replacement of n < N objects from this set. Then, having
K SUCCESS-es among the n samples has a well defined
probability [28]. So, when in our data we observe a total of
k successes, or projects joined with prior social links, we can
tell exactly how far that is from random [29]. We choose the
standard p-value < 0.05 as the statistical significance cutoff
for rejecting the null hypothesis for each developer. Thus, if
we reject a null hypothesis there is only a 5% probability it
was a false positive. Since we are testing thousands of null
hypotheses and calculating how many of them were rejected,
we use a family-wise adjustment to the p-values to correct
for false positives. We choose the robust Benjamini-Hochberg
correction [2] for this.

3.5.2 Modeling Productivity after Joining
To model the effects of a developer’s past technical ex-

perience and strength of social links on their productivity
in a project, we use negative binomial regression [28]. This
regression is a generalized linear regression model effective
in handling over-dispersed count data (with its counterpart
the quasi-poisson regression, they are used interchangeably
in this situation). Over-dispersed counts are those where
their variance is much larger than their mean [39]. Our re-
sponse counts are over-dispersed. We present the results of

the modeling as odds ratios, i.e., as the exp (exponent with
base e) of the regression coefficients. They correspond to the
multipliers compared to a baseline (null) behavior.

We use the fraction of total deviance explained (1 −
residual deviance/null deviance) as an assessment of the
goodness of model fit, i.e., McFaden’s pseudo-R2 [28]. To
understand collinearity among the predictors we use the
VIF [28], or variance inflation factor. In all our models,
the variance inflation factors were below 2, except for those
between the interaction terms and their comprising factors,
which is expected. The low VIF’s of our model coefficients
imply that collinearity between them is not an issue. We
describe the regression variables next.

Response Variable

Productivity.
We measure the productivity of developers as the number

of file changes made to the popular source code language
files mentioned above. For example, if a developer authored
3 commits in a time period and touched 4 python files in the
first commit, 2 text files in the second, and 5 java files in
the third, we say that the developer has made 9 file changes
to source code files. We apply this measure to the individual
time periods, where we consider only file changes within
the given period, and in the cumulative model to the total
number of file changes a developer has made to a project.

However, we also considered several other metrics of pro-
ductivity. One metric is simply the number of commits. We
chose file changes over raw commits as they give us a slightly
finer granularity of the work done in the projects. A more
involved metric would use either the lines added or sum of
lines added and deleted to a project. We had originally built
our models using these line-based metrics. However, upon
careful examination of the data, we believe that noise in git

line change data makes it a less reliable measure than file
changes. Upon joining a project, developers may merge code
from elsewhere, which will distort line change data far more
than file change data. Nevertheless, we compared models for
joining behavior in the first time period for file changes and
with lines added and removed, and we found that the signs
and significance of the coefficients were consistent across
these models.

To avoid effects of outlying behavior, we ignored developer
project pairs where the first or the second time period had
more than 50 file changes. Large commits may indicate a
different type of activity than usual developer behavior [15].
We considered models of the first time period, without sub-
setting the data. The signs and significance of the model
coefficients did not change, compared to our models reported
here, but the outlying large commits have high leverage and
artificially inflate the amount of variance our models explain.
For the same reasons, we filter out very high values for the
strength of prior links (defined next), i.e., those higher than
20. After applying these filters, we retained 39,461 samples
of an original 51,593 samples of project joining behavior. Fi-
nally, in the cumulative models, we further subset the data to
avoid projects where developers had made over 500 cumula-
tive file changes. This restriction only removed an additional
210 projects from the data compared to the models covering
behavior in the initial period.



Independent Variables

Prior Social Connections.
As developers join new projects, they are exposed to other

project contributors. Developers that appear together in
many projects may develop friendships or working relation-
ships. These relationships of developers repeated across
projects may affect developers’ choices of projects to join
and behavior within these projects. To find such putative
social connections, we calculated their precursors: the set
of stable pairs of developers among our projects. We define
a stable pair as two developers who appear together in at
least two different projects, based on the author fields of
the project’s commits. This set is an overestimate of actual
social connections built on the above mechanism; it should
certainly not be considered a strong measure of collaboration,
which is better defined as developers touching similar files
within a short time frame [43]. Lima et al. have built a
similar stable developer-pair network, though they used push
events on GitHub rather than the commits themselves [22].

Naturally, the social connections between developers are
not all of equal strength. Therefore, we incorporated several
other factors to weight these ties more appropriately. First,
developers who work together in many projects are likely to
have stronger ties than those together in only few. Second,
the strength of the social connection can change over time, as
two developers may work on an increasing or decreasing set
of shared projects. Finally, developers with similar interests
may contribute to many of the same projects, without neces-
sarily developing a strong relationship. This is more likely
in large projects with many other developers participating,
so the team size in each of the developer’s shared projects
should be taken into account. Putting it all together, the
strength of a developer’s social connection to a project is the
aggregate of their social connections to all developers already
in the project that they have worked with previously.

To precisely measure the strength of a developer’s social
connection to a project, we define some variables first. Let
D stand for a developer, p for a project they join, and tj
for the time period of joining. Let also, pf be the number
of people in p with whom D has worked together elsewhere,
prior to tj . And for each person i let Ki,tj−1 be the number
of projects in which D and i worked together, before tj . For
each of these Ki,tj−1 projects, let ai,k,tj−1 be the number of
authors in the project prior to tj . Then, we calculate D ’s
initial social connection to p with the following formula:∑pf

i=1

∑Ki,tj−1

k=1
1

ai,k,tj−1

In other words, the strength of a social connection to any
one developer is the sum of all their past shared projects,
normalized by the number of authors in the project prior
to the time of joining. Figure 1 illustrates our metric’s vari-
ability as a function of the count of past connections. This
highlights how even if a developer has worked with only a
couple of members of a project they are joining, they may
share many past projects and may have a stronger connection
to this project than to a project where they have only small
incidental connections to many developers. We also exper-
imented with several other measures of social connection.
Those included removing the team size normalization, select-
ing only the weight of the strongest tie to the project, and
also mapping social connections only when both developers
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Figure 1: Comparison of our metric of social con-
nection strength with the count of developers on a
project team that a developer has previously worked
with (i.e., pf). The data has been cut off at 20 for
each metric to remove outliers.

were major contributors to past projects. However, we found
the regression models with these metrics similar, but with
less significance or explanatory power. Finally, the team size
of the current project can also play a role, but we control for
that variable separately in our regressions.

Past Experience.
A developer’s past experience with the languages used in

a project is the count of file changes they have made in these
languages to any project prior to joining the new project. To
illustrate this metric, consider a project that uses C++ and
python code. Suppose one developer joins and contributes
only C++ code. Then, this developer’s relevant past ex-
perience (after this project) consists only of file changes in
C++. However, if another developer contributes in python
and C++, then we would add changes in both languages as
relevant past experience.

Control Variables
Many additional factors can influence how productive a

developer may be in a project. To better isolate the effects
of social links and past experience, we included as controls
in our models the following: project team size, a developer’s
overall productivity during their tenure with the project,
whether they were a project founder, and the time period
when they joined.

Project Team Size.
To control for the size of the project, we count how many

people were already “affiliated” with the project at the time
of joining. For an individual to be considered affiliated with
a project, they must have authored at least one commit
recorded in the project’s main repository.

Total Productivity per Time Period.
A developer’s productivity in any one project will depend

on her total activity for the time period. Thus, we include two
controls to adjust for developer productivity in a time period.



These are: 1) the total number of file changes the developer
makes in the time period; and 2) the total number of projects
the developer has contributed to in this time period. In the
cumulative model, there is no obvious direct analogue to the
number of other projects contributed to in the time period.
Therefore, we substitute this measure with the count of past
projects the developer had joined before joining this project.
In the model studying initial productivity, we do not include
both prior projects and currently active projects as they
correlate highly with each other.

Joining and Founding.
One important distinction to make when studying a devel-

oper’s joining behavior is whether they are joining projects
or if they are starting a new project. Obviously, a developer
who starts a project alone will not have any connection to
team members when joining as they are the first to join.
Therefore, we must distinguish between these two types of
projects for each developer. We say that a developer has
founded a project if they have committed to this project
on the first day that commits appear in its main repository.
Otherwise, they are considered as joining the project. One
concern with this definition is that if an existing project is
imported to git, the commits of all the existing developers
could appear on the first day. We checked the number of first
day committers for each project and found only 16 projects
with 10 or more committers on the first day, with the largest
having 31 first day committers. As 51,615 of the projects
had a unique founder, we do not believe this will affect our
results significantly.

Time Period Joined.
When considering the cumulative model of productivity

over the entire project lifespan, the time periods in which
developers begin contributing will affect how much work
they can accomplish. A developer who joins a project in
2009 will have the opportunity to contribute more than a
developer who joins a project in 2013, relative to a specific
data collection time.

Other Controls Considered.
We considered using other metrics for project size besides

the number of project members, but they all correlated with
team size and raised the VIF scores of our models beyond
acceptable ranges. Team size was found to have the greatest
effect, so we chose it as our measure.

4. RESULTS AND DISCUSSION

4.1 Social Links and Joining a Project
To assess if developers preferentially join projects where

they have prior social connections, or links, we split all
projects joined by a developer into two groups: those with
and those without prior social links for that developer. As
detailed in Section 3.5.1, we first tested the null hypothesis
that cumulatively, over all time periods between 2009 and
2013, a developer joined projects with past social links as
expected by chance. The first row of Table 1 shows the
number of null hypotheses tested (one per developer) that
were rejected, or not, at 0.05 significance level, after cor-
recting for multiple hypothesis testing 3.5.1. We see that
just over 90% of our prolific developers preferentially join

Table 1: Tests of null hypotheses: “developers ran-
domly join new projects”. The “Rejected” column
indicates preference for projects with past social con-
nections. “Cumulative” means over all time periods.

Description #Rejected #Not Rej.
Cumulative

Num. Hypotheses
(Num. Developers)

1081 119

Per Period
Num. Hypotheses (Periods) 4199 2854

Median of Periods
Num. Developers with >
half periods non-random

680 520

projects with past social connections. Next, we tested at
finer resolution, to see if the developers’ joining preference in
each time period is non-random. We found, see second row
in Table 1, that in just under 60% of the time periods that
is the case. Finally, in the third row we aggregate for each
developer their per-period results. We find that 56.7% of
them preferentially join projects with past social connections
in more than half of the time periods.

These are consistent with a positive answer to RQ1.
While precise, the above approach is coarse, and combines

all possible determinants of one’s preferential project joining
behavior, e.g., project size, popularity, etc., into a single
choice. Such an approach works for our goal of motivating
our two latter, more substantial research questions. It is also
in line with similar prior results. In a comprehensive, but
narrower study, Hahn et al. [13] showed that prior social links
with project initiators do matter for developer migration to
new projects, when controlled for a number of factors, like
project and team based observables. Due to the data mining
nature of our study, we cannot distinguish between incidental
and purposeful relationships.

4.2 Developers’ Initial Productivity
Here we examine the initial productivity of a developer

after they join a new project. After pre-processing and
filtering,3 our data set consists of 1,234 distinct developers,
who have joined 22,028 distinct projects. We measure initial
productivity in terms of the number of file changes to source
code files within the first 6-month period after joining a
project. Then, we model this productivity as a function
of a number of control variables, as described in methods,
and two independent variables: (a) the strength of existing
social links to prior co-developers that the joining developer
finds within the new project, and (b) her familiarity with
the dominant languages in the new project.

Since we use a complex measure for prior social link
strength, we recognize that having any social links (non-zero
friends) in a new project may be unrelated to the strength
of those links to the developer. Likewise for prior experi-
ence with a project’s dominant language. Thus, we cap-
ture the dependent variables in two ways: continuously and
categorically (or nominally). The continuous variables are
prior link strength and prior exp strength.

3Recall that our data set includes 58,092 projects and 1,255
users; we consider their project joining behaviors in time
periods t1 to t9. We filter out contribution of large sizes in
the first or second time periods, those with large outlying
prior social links, and look at popular source code languages
only. See the methods section for more on this setup.



Table 2: Odds ratio coefficients from a negative bino-
mial model for the number of initial file commits to
a project. [16]

# initial file changes

Dependent Variable: Odds ratios

has prior links 1.127∗∗∗

(0.032)

has prior exp 1.101∗∗∗

(0.023)

prior link strength 0.980∗∗∗

(0.002)

prior exp strength 1.000∗∗∗

(0.00000)

# projects in initial period 0.998∗∗∗

(0.0001)

# total file changes initial 1.000∗∗∗

(0.00000)

authors prior to join 1.000∗∗

(0.00000)

is founder 2.573∗∗∗

(0.013)

time period joined 1.002
(0.002)

has prior exp:
has prior links 0.942

(0.033)

Intercept 5.233∗∗∗

(0.023)

Observations 39,461
Log Likelihood −117,086.200
θ 1.120∗∗∗ (0.009)
Null deviance: 50739
Residual deviance: 40624
Akaike Inf. Crit. 234,194.500

Note: ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01

For their categorical counterparts, we use two dichoto-
mous variables. The first one is has prior exp, defined as
TRUE (coded as 1) when prior exp strength (in the pro-
gramming languages dominant in the project) is greater
than 0, and FALSE (coded as 0) otherwise. The second
is has prior links, defined as TRUE (coded as 1) when
prior link strength is greater than 0, and FALSE (coded as
0) otherwise. In addition, to deconvolve a possible relation-
ship between the categorical variables, we added an interac-
tion term (has prior exp == 1) ∗ (has prior links == 1).

We use a negative binomial multiple regression for our
model, with a log link function [28]. Table 2 shows the odds
ratios and significance for the model. The fraction of total
deviance explained by the model is 19.9%.

Of the controls, all but the time period of joining are
significant, although most have negligible effects. Being a

founder of a project is the notable and largest predictor of
one’s initial productivity, which is not unexpected. The odds
ratio of 2.573 means that a developer who is joining a new
project is 2.573 times likelier to have higher productivity in
the initial period if she is a founder of that project. There
is also a very slight slow-down associated with working on
more projects during the initial time period after joining
(#projects in initial period).

Next we look at the categorical independent variables.
The interaction effect tells by how much the effect of prior
familiarity with the project’s dominant languages differs
between those developers who have and those that do not
have prior social connections to team members in the project
they are joining. But, it does so in multiplicative terms.
To understand the individual terms in the presence of the
interaction, we follow the standard practice of varying one
while holding the other constant, and vice versa.

The odds ratio for has prior exp is 1.101, which means
that the odds of initial changes are 1.101 times, or 10.1%
higher for developers with prior experience in that project’s
languages. Since we have added an interaction term between
has prior exp and has prior links, the above effect of having
prior experience refers to developers without prior social links
in the project they are joining. The effect of prior experience
for developers with prior social links is 0.942 times the effect
for developers without prior social links, 0.942∗1.101 = 1.037,
or 3.7% higher odds.

Similarly, the odds ratio for has prior links is 1.127, which
means that the odds of initial changes are 1.127 times, or
12.7%, higher for developers with prior social links in that
project. Again, because of the interaction term, this effect
is for developers without prior experience in the languages
of the project they are joining. The effect of prior social
links for developers with prior project’s language experience
is 0.942 times the effect for developers without prior social
links, 0.942 ∗ 1.127 = 1.062, or 6.2% higher odds.

The results also show that the interaction term in this
model, although sizable, is not significant. Thus, the two
dichotomous variables could have been modeled separately,
with the same fidelity. In fact, a model as above but without
the interaction term returns odds ratios for has prior links
and has prior exp of 1.062 and 1.037, respectively.

Finally, we look at the continuous dependent variables. In-
terestingly, the social link strength odds ratio is smaller than
1, thus lowering the odds of baseline commit contributions
by a factor of 0.980, or close to a 2% reduction for every
unit change of prior link strength. The amount of prior
experience in the project’s dominant languages doesn’t have
a sizable effect on productivity.

In summary, the answer RQ2 is that having either prior
experience with the dominant languages in the new project
or prior social links in it will increase the odds between 3.7%
and 6.2%, for additional initial file changes over baseline by
the newcomer, with social links doing slightly better than
prior experience. However, joining a projects having stronger
social links decreases the odds of being more productive in
the initial period than the baseline by 2% for each unit of
prior link strength.

4.3 Developers’ Overall Productivity
Next, we look at the developer’s productivity aggregated

from the moment they joined a new project until the end of
data collection, i.e., their overall productivity in our data



set. This data set is a subset of the prior one, where we
also remove developers with very large cumulative contri-
butions to projects. This leaves us with 1,234 developers
and 21,965 distinct projects. We use a negative binomial
multiple regression, with a log link function [28]. Our model
here is similar to the one above, except we add an additional
independent variable: the initial developer’s productivity,
i.e., the dependent variable from the previous model. Table
3 shows the effects of our independent and control variables.
In comparison to previous model, the fraction of deviance
explained in the cumulative model is 34.7%.

The model coefficients vary quite a bit with respect to
the initial productivity model. The controls are similarly
uneventful except for the expected positive effect of being a
project founder. However, in the cumulative model it is lower
than before, with an odds ratio 1.630. This is consistent with
founders having a sustained higher productivity long-term,
although lower than in the initial, likely euphoric, period.
Also, the time period in which a developer joins is important
here: the later one joins, the lower their overall productivity.
This is expected, as these developers have been contributing
for a shorter time. Finally, the size of the contributions in
the initial period (#initial file changes) correlates with an
increase in cumulative contributions by 5.9%. As might be
expected, greater productivity initially makes a higher total
contribution more likely.

The categorical variables here also tell an interesting story,
and act differently than in RQ2. Unlike previously, in this
model the interaction term is sizeable and significant. The
odds ratio for has prior exp is 1.077, which means that the
odds of overall file changes are 7.7% higher for developers
with prior experience in that project’s language. Due to the
interaction term between has prior exp and has prior links,
the above measure of productivity is for developers without
prior social links in the project they are joining. The effect of
prior experience for developers with prior social links in the
new project is 1.433 times the effect for developers without
social links, or 1.433 ∗ 1.077 = 1.543, i.e., the odds are 54.3%
higher for above baseline overall contributions. Thus, in
the long run experience matters, though its positive effect
on productivity is stronger in the presence of past social
connections.

On the other hand, the odds ratio for has prior links is
0.904, or 9.6% lower, for developers with prior social links
in that project. Again, because of the interaction term,
this effect is for developers without prior experience in the
languages of the project they are joining. The effect of prior
social links for developers with prior language experience is
1.433 times the effect for developers without prior experience,
1.433∗0.904 = 1.295, or 29.5% higher odds for above baseline
overall contributions. Therefore, the presence of a social link
only leads to greater cumulative productivity if the developer
also has prior experience in the project’s languages.

The continuous counterparts to the above independent
factors are significant in this model, but only the increase
in the past social l ink strength has a noticeable effect on
the odds of increased productivity. As opposed to the small
negative effect on productivity in the initial period (see RQ2),
in this cumulative model, one unit of increase in the link
strength to members of the project gives a slight benefit to
productivity of 1.2% higher odds.

In summary, the answer to RQ3 is that in the long-term,
for the overall contributions to a new project one’s social

Table 3: Odds ratio coefficients from a negative bino-
mial model for the number of total file commits to
a project. [16]

# cumulative file changes

Dependent Variable: Odds ratios

# initial file changes 1.059∗∗∗

(0.001)

has prior links 0.904∗

(0.043)

has prior exp 1.077∗∗

(0.027)

prior link strength 1.012∗∗∗

(0.0002)

prior exp strength 1.000∗∗

(0.00000)

# prior projects 0.999∗∗∗

(0.0001)

# total file changes 1.000∗∗

(0.00000)

authors prior to join 1.000∗∗∗

(0.00000)

is founder 1.630∗∗∗

(0.016)

time period joined 0.848∗∗∗

(0.002)

has prior exp:
has prior links 1.433∗∗∗

(0.045)

Intercept 12.775∗∗∗

(0.027)

Observations 39,251
Log Likelihood −128,252.500
θ 0.832∗∗∗ (0.006)
Null deviance: 63192
Residual deviance: 41733
Akaike Inf. Crit. 256,529.100

Note: ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01

links and prior experience matter greatly. In fact, developers
with prior social links in the new project have much higher
odds of having higher productivity when they also have prior
experience, with an increase over baseline of between 29.5%
and 54.3%. However, without prior experience, social links
have a slightly detrimental effect to cumulative productivity.
In aggregate, as the strength of social connection to a project
grows, there is a slight growth in cumulative productivity.

4.4 Comparing the Initial and Overall Models
The significance of the interaction term in RQ3 indicates

that developers have significantly higher odds of above base-
line overall contributions when they have both prior experi-



ence in the dominant languages of the project they are joining
and prior social links to team members of the project. Thus,
a model without the interaction term would be different
substantially, which was not the case in RQ2.4

The seeming contrast between the effect of link strength
increase being negative in the initial period and positive
cumulatively is interesting. Arguably, initial periods are when
a lot of the ”learning the ropes” happens, and developer’s
joining new projects incur coordination and communication
overhead related to the number of their social links in the
project, as they are trying to navigate the complexity of the
whole project. Cumulatively though, once the ”dust settles”,
it is reasonable to think of one’s overall contributions to a
project as being more focused on smaller project modules,
vs. learning the whole complex environment through their
social connections. Thus, in the longer run, having more
prior social connections in a project can pay dividends, as
they would serve as the interface points to different project
parts/modules.

The difference in the magnitudes of the has social links
effects in the initial and cumulative models may suggest that
social connections can pull developers to contribute for a
while, but that their effect wanes in the longer term. This
underlines social links as a very important recruiting factor.
It is possible that this effect also carries over into the realm
of retention. We noticed that when the social connection
strength increases there is a slight increase in cumulative
productivity. However, further investigation is needed; we
leave that for future work.

5. THREATS TO VALIDITY
Data Gathering: Due to its size and the limitations on

our computational and human resources, it was not feasible
to mine GitHub in its entirety. Instead, we used a sample
of developers who have made significant contributions to
projects, as described earlier. This is, by definition, a biased
set of developers. However, this is also a set of people
who have participated in multiple projects, and thus can
be analyzed with our methodology. They are also people
who would have, arguably, made multiple social links while
participating in such migrations.

We considered only commits to projects that appeared
in the main repository and not those that stayed only in
forks. As it is very easy to fork a project on GitHub, we
believe restricting our study to commits accepted to the
main branch better measures meaningful contributions to
the project. Ascribing meaning to these local commits is
more difficult, but a model that successfully incorporates
these may have different results. Likewise, we consider only
the author fields of commits when measuring contributions,
as we are interested in the original author of the source code,
even if that author contributed the code originally in a fork.

To truly measure the preferences for joining projects, we
would need to gather data on all projects on GitHub to see
all projects potentially joinable projects where a developer
had some connection to the team members. As we have data
on only a subset of projects, our study is only an estimate.

Limitations in Methods: Our measures of identifying
the language of a file is based on file extensions and language
labels on repositories. More accurate measures could examine

4The interaction term is not usually interpreted in isolation,
without the corresponding comprising factors.

the contents of the file itself to make a more accurate measure
of the file types, though we tried to be conservative in labeling
a file a member of a specific language. About 1% of the files
could not be identified as either a specific source language
or non source code files, and were categorized as ambiguous.
We excluded these from our study, but we do not believe the
impact is significant.

Moreover, we excluded non source code contributions from
our study. It is possible that a developer may begin con-
tributing to a project exclusively in non source code files and
then begin contributing to source code later. In this case our
labeling of the initial period is the initial period of source
code contribution in the project.

Resolving aliases of a single user from git commit infor-
mation can only give us an estimated set of commits for a
unique user id. If a developer uses multiple accounts with
dissimilar names and emails, unifying all their commits may
not be possible.

Our measure of social connections between developers is
incidental and perhaps overly simple. We try to control for
this by normalizing by the number of other authors in each
project shared. A more comprehensive metric would involve
communication correspondence between developers.

6. CONCLUSIONS
We sought out to elucidate the link between the socio-

technical relationships among developers in the GitHub
ecosystem and their migration to new projects. Our find-
ings, that developers preferentially choose to join projects
where they have prior working relationships, are certainly
not unexpected. Awareness of this fact may be utilized when
recruiting or retaining developers.

The effects of past linguistic experience and prior relation-
ships on productivity, both in the initial joining period and
cumulatively, are nuanced and thus intriguing. The improved
productivity provided by social connections in linguistically
familiar environments shows that developers not only prefer-
entially join projects to which they are socially connected,
but also contribute more (cumulatively) in the presence of
stronger social ties.

However, engaging newcomers meaningfully is a key con-
cern for both new and established projects, and our results
suggest that in unfamiliar environments, the presence of past
social ties alone may not be enough to lead to continued con-
tributions in the long term. Therefore, additional measures
may be needed to encourage developer retention.

Of course, given the complex social environment of GitHub
and the distributed nature of git itself, associations between
prior social contacts, language environment, and productivity
may be a reflection of an underlying causal network that
incorporates these and other factors. Models of this dynamic
network would assist both recruiters to projects and develop-
ers considering what projects to join; our research is a step
towards understanding factors relevant to such a system.
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