3. Relational Model and Relational Algebra

Contents

- Fundamental Concepts of the Relational Model
- Integrity Constraints
- Translation ER schema \(\rightarrow\) Relational Database Schema
- Relational Algebra
- Modification of the Database

Overview

- Relational Model was introduced in 1970 by E.F. Codd (at IBM).

- Nice features: Simple and uniform data structures – *relations* – and solid theoretical foundation (important for query processing and optimization)

- Relational Model is basis for most DBMSs, e.g., Oracle, Microsoft SQL Server, IBM DB2, Sybase, PostgreSQL, MySQL, . . .

- Typically used in conceptual design: either directly (creating tables using SQL DDL) or derived from a given Entity-Relationship schema.
Basic Structure of the Relational Model

- A relation r over collection of sets (domain values) D_1, D_2, \ldots, D_n is a subset of the Cartesian Product $D_1 \times D_2 \times \ldots \times D_n$

 A relation thus is a set of n-tuples (d_1, d_2, \ldots, d_n) where $d_i \in D_i$.

- Given the sets

 $\text{StudId} = \{412, 307, 540\}$
 $\text{StudName} = \{\text{Smith, Jones}\}$
 $\text{Major} = \{\text{CS, CSE, BIO }\}$

 then $r = \{(412, \text{Smith, CS}), (307, \text{Jones, CSE}), (412, \text{Smith, CSE})\}$ is a relation over StudId \times StudName \times Major

Relation Schema, Database Schema, and Instances

- Let A_1, A_2, \ldots, A_n be attribute names with associated domains D_1, D_2, \ldots, D_n, then

 $R(A_1: D_1, A_2: D_2, \ldots, A_n: D_n)$

 is a relation schema. For example,

 $\text{Student(StudId: integer, StudName: string, Major: string)}$

- A relation schema specifies the name and the structure of the relation.

- A collection of relation schemas is called a relational database schema.
Relation Schema, Database Schema, and Instances

- A relation instance \(r(R) \) of a relation schema can be thought of as a table with \(n \) columns and a number of rows. Instead of relation instance we often just say relation. An instance of a database schema thus is a collection of relations.

- An element \(t \in r(R) \) is called a tuple (or row).

<table>
<thead>
<tr>
<th>Student</th>
<th>StudId</th>
<th>StudName</th>
<th>Major</th>
</tr>
</thead>
<tbody>
<tr>
<td>412</td>
<td>Smith</td>
<td>CS</td>
<td></td>
</tr>
<tr>
<td>307</td>
<td>Jones</td>
<td>CSE</td>
<td></td>
</tr>
<tr>
<td>412</td>
<td>Smith</td>
<td>CSE</td>
<td></td>
</tr>
</tbody>
</table>

- A relation has the following properties:
 - the order of rows is irrelevant, and
 - there are no duplicate rows in a relation

Integrity Constraints in the Relational Model

- Integrity constraints (ICs): must be true for any instance of a relation schema (admissible instances)
 - ICs are specified when the schema is defined
 - ICs are checked by the DBMS when relations (instances) are modified

- If DBMS checks ICs, then the data managed by the DBMS more closely correspond to the real-world scenario that is being modeled!
Primary Key Constraints

- A set of attributes is a key for a relation if:
 1. no two distinct tuples have the same values for all key attributes, and
 2. this is not true for any subset of that key.

- If there is more than one key for a relation (i.e., we have a set of candidate keys), one is chosen (by the designer or DBA) to be the primary key.

 Student(StudId : number, StudName : string, Major : string)

- For candidate keys not chosen as primary key, uniqueness constraints can be specified.

- Note that it is often useful to introduce an artificial primary key (as a single attribute) for a relation, in particular if this relation is often “referenced”.
Foreign Key Constraints and Referential Integrity

• Set of attributes in one relation (child relation) that is used to “refer” to a tuple in another relation (parent relation). Foreign key must refer to the primary key of the referenced relation.

• Foreign key attributes are required in relation schemas that have been derived from relationship types. Example:

 offers(Prodname → PRODUCTS, SName → SUPPLIERS, Price)
 orders((FName, LName) → CUSTOMERS, SName → SUPPLIERS, Prodname → PRODUCTS, Quantity)

 Foreign/primary key attributes must have matching domains.

• A foreign key constraint is satisfied for a tuple if either
 – some values of the foreign key attributes are null (meaning a reference is not known), or
 – the values of the foreign key attributes occur as the values of the primary key (of some tuple) in the parent relation.

• The combination of foreign key attributes in a relation schema typically builds the primary key of the relation, e.g.,

 offers(Prodname → PRODUCTS, SName → SUPPLIERS, Price)

• If all foreign key constraints are enforced for a relation, referential integrity is achieved, i.e., there are no dangling references.
Translation of an ER Schema into a Relational Schema

1. Entity type \(E(A_1, \ldots, A_n, B_1, \ldots, B_m) \)
 \(\implies \) relation schema \(E(A_1, \ldots, A_n, B_1, \ldots, B_m) \).

2. Relationship type \(R(E_1, \ldots, E_n, A_1, \ldots, A_m) \) with participating entity types \(E_1, \ldots, E_n \);
 \(X_i \equiv \) foreign key attribute(s) referencing primary key attribute(s) of relation schema corresponding to \(E_i \).
 \(\implies R(X_1 \rightarrow E_1, \ldots, X_n \rightarrow E_n, A_1, \ldots, A_m) \)

For a functional relationship (N:1, 1:N), an optimization is possible. Assume N:1 relationship type between \(E_1 \) and \(E_2 \).
We can extend the schema of \(E_1 \) to
\[
E_1(A_1, \ldots, A_n, X_2 \rightarrow E_2, B_1, \ldots, B_m), \text{ e.g.,}
\]
\[
\text{EMPLOYEES(EmpId, DeptNo } \rightarrow \text{ DEPARTMENTS, } \ldots \text{)}
\]
• Example translation:

\[
\begin{align*}
&\text{TABLES:} \\
&\quad \text{BOOKS(DocId, Title, Publisher, Year)} \\
&\quad \text{STUDENTS(StId, StName, Major, Year)} \\
&\quad \text{DESCRIPTIONS(Keyword)} \\
&\quad \text{AUTHORS(AName, Address)} \\
\end{align*}
\]

In step 2 the relationship types are translated:

\[
\begin{align*}
&\text{borrows(DocId }\rightarrow\text{ BOOKS, StId }\rightarrow\text{ STUDENTS, Date)} \\
&\text{has-written(DocId }\rightarrow\text{ BOOKS, AName }\rightarrow\text{ AUTHORS)} \\
&\text{describes(DocId }\rightarrow\text{ BOOKS, Keyword }\rightarrow\text{ DESCRIPTIONS)} \\
\end{align*}
\]

No need for extra relation for entity type “DESCRIPTIONS”:

\[
\text{Descriptions(DocId }\rightarrow\text{ BOOKS, Keyword)}
\]
3.2 Relational Algebra

Query Languages

• A query language (QL) is a language that allows users to manipulate and retrieve data from a database.

• The relational model supports simple, powerful QLs (having strong formal foundation based on logics, allow for much optimization)

• Query Language \neq Programming Language
 – QLs are not expected to be Turing-complete, not intended to be used for complex applications/computations
 – QLs support easy access to large data sets

• Categories of QLs: procedural versus declarative

• Two (mathematical) query languages form the basis for “real” languages (e.g., SQL) and for implementation
 – Relational Algebra: procedural, very useful for representing query execution plans, and query optimization techniques.
 – Relational Calculus: declarative, logic based language

• Understanding algebra (and calculus) is the key to understanding SQL, query processing and optimization.
Relational Algebra

- Procedural language

- Queries in relational algebra are applied to relation instances, result of a query is again a relation instance

- Six basic operators in relational algebra:
 - *select* σ selects a subset of tuples from reln
 - *project* π deletes unwanted columns from reln
 - *Cartesian Product* \times allows to combine two relations
 - *Set-difference* $-$ tuples in reln. 1, but not in reln. 2
 - *Union* \cup tuples in reln 1 plus tuples in reln 2
 - *Rename* ρ renames attribute(s) and relation

- The operators take one or two relations as input and give a new relation as a result (relational algebra is “closed”).
Select Operation

- Notation: $\sigma_P(r)$

Defined as

$$\sigma_P(r) := \{ t \mid t \in r \text{ and } P(t) \}$$

where

- r is a relation (name),
- P is a formula in propositional calculus, composed of conditions of the form

$$<\text{attribute}> = <\text{attribute}> \text{ or } <\text{constant}>$$

Instead of “=” any other comparison predicate is allowed (\neq, $<$, $>$ etc).

Conditions can be composed through \land (and), \lor (or), \neg (not)

- Example: given the relation r

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>α</td>
<td>1</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>α</td>
<td>β</td>
<td>5</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>β</td>
<td>β</td>
<td>12</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>β</td>
<td>β</td>
<td>23</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

$\sigma_{A=B \land D>5}(r)$

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>α</td>
<td>1</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>β</td>
<td>β</td>
<td>23</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>
Project Operation

- Notation: $\pi_{A_1, A_2, \ldots, A_k}(r)$
 where A_1, \ldots, A_k are attribute names and r is a relation (name).

- The result of the projection operation is defined as the relation that has k columns obtained by erasing all columns from r that are not listed.

- Duplicate rows are removed from result because relations are sets.

- Example: given the relations r

 \[
 \begin{array}{ccc}
 A & B & C \\
 \hline
 \alpha & 10 & 2 \\
 \alpha & 20 & 2 \\
 \beta & 30 & 2 \\
 \beta & 40 & 4 \\
 \end{array}
 \]

 \[
 \begin{array}{cc}
 \pi_{A,C}(r) & A & C \\
 \hline
 \alpha & 2 \\
 \beta & 2 \\
 \beta & 4 \\
 \end{array}
 \]
Cartesian Product

- Notation: \(r \times s \) where both \(r \) and \(s \) are relations

 Defined as \(r \times s := \{ tq \mid t \in r \text{ and } q \in s \} \)

- Assume that attributes of \(r(R) \) and \(s(S) \) are disjoint, i.e., \(R \cap S = \emptyset \).

 If attributes of \(r(R) \) and \(s(S) \) are not disjoint, then the rename operation must be applied first.

- Example: relations \(r, s \):

 \[
 \begin{array}{c|c}
 r & s \\
 \hline
 A & B & C & D & E \\
 \hline
 \alpha & 1 & \alpha & 10 & + \\
 \beta & 2 & \alpha & 10 & + \\
 \beta & 2 & \beta & 10 & + \\
 \beta & 2 & \gamma & 10 & - \\
 \end{array}
 \]

 \[
 r \times s
 \begin{array}{c|c|c|c|c}
 A & B & C & D & E \\
 \hline
 \alpha & 1 & \alpha & 10 & + \\
 \alpha & 1 & \beta & 10 & + \\
 \alpha & 1 & \beta & 20 & - \\
 \alpha & 1 & \gamma & 10 & - \\
 \beta & 2 & \alpha & 10 & + \\
 \beta & 2 & \beta & 10 & + \\
 \beta & 2 & \beta & 20 & - \\
 \beta & 2 & \gamma & 10 & - \\
 \end{array}
 \]
Union Operator

- Notation: $r \cup s$ where both r and s are relations
 Defined as $r \cup s := \{ t \mid t \in r \text{ or } t \in s \}$

- For $r \cup s$ to be applicable,
 1. r, s must have the same number of attributes
 2. Attribute domains must be compatible (e.g., 3rd column of r has a data type matching the data type of the 3rd column of s)

- Example: given the relations r and s

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>r</td>
<td>α</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>α</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>β</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>α</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>β</td>
<td>3</td>
</tr>
</tbody>
</table>

$\therefore r \cup s$

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>α</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>α</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>β</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>β</td>
<td>3</td>
</tr>
</tbody>
</table>
Set Difference Operator

- Notation: $r - s$ where both r and s are relations
 Defined as $r - s := \{ t \mid t \in r \text{ and } t \notin s \}$

- For $r - s$ to be applicable,
 1. r and s must have the same arity
 2. Attribute domains must be compatible

- Example: given the relations r and s

 \[
 r = \begin{array}{|c|c|}
 \hline
 A & B \\
 \hline
 \alpha & 1 \\
 \alpha & 2 \\
 \beta & 1 \\
 \hline
 \end{array}
 \quad
 s = \begin{array}{|c|c|}
 \hline
 A & B \\
 \hline
 \alpha & 2 \\
 \beta & 3 \\
 \hline
 \end{array}
 \]

 \[
 r - s = \begin{array}{|c|c|}
 \hline
 A & B \\
 \hline
 \alpha & 1 \\
 \beta & 1 \\
 \hline
 \end{array}
 \]

Rename Operation

- Allows to name and therefore to refer to the result of relational algebra expression.

- Allows to refer to a relation by more than one name (e.g., if the same relation is used twice in a relational algebra expression).

- Example:

 \[\rho_x(E) \]

 returns the relational algebra expression \(E \) under the name \(x \).

 If a relational algebra expression \(E \) (which is a relation) has the arity \(k \), then

 \[\rho_x(A_1, A_2, \ldots, A_k)(E) \]

 returns the expression \(E \) under the name \(x \), and with the attribute names \(A_1, A_2, \ldots, A_k \).
Composition of Operations

• It is possible to build relational algebra expressions using multiple operators similar to the use of arithmetic operators (nesting of operators)

• Example: $\sigma_{A=C}(r \times s)$

\[
\begin{array}{c|c|c|c|c}
A & B & C & D & E \\
\hline
\alpha & 1 & \alpha & 10 & + \\
\alpha & 1 & \beta & 10 & + \\
\alpha & 1 & \beta & 20 & - \\
\alpha & 1 & \gamma & 10 & - \\
\beta & 2 & \alpha & 10 & + \\
\beta & 2 & \beta & 10 & + \\
\beta & 2 & \beta & 20 & - \\
\beta & 2 & \gamma & 10 & - \\
\end{array}
\]

$\sigma_{A=C}(r \times s)$

\[
\begin{array}{c|c|c|c|c}
A & B & C & D & E \\
\hline
\alpha & 1 & \alpha & 10 & + \\
\beta & 2 & \beta & 10 & + \\
\beta & 2 & \beta & 20 & - \\
\end{array}
\]
Example Queries

Assume the following relations:

- BOOKS(DocId, Title, Publisher, Year)
- STUDENTS(StId, StName, Major, Age)
- AUTHORS(AName, Address)
- borrows(DocId, StId, Date)
- has-written(DocId, AName)
- describes(DocId, Keyword)

- List the year and title of each book.
 \[\pi_{\text{Year, Title}}(\text{BOOKS}) \]

- List all information about students whose major is CS.
 \[\sigma_{\text{Major} = 'CS'}(\text{STUDENTS}) \]

- List all students with the books they can borrow.
 \[\text{STUDENTS} \times \text{BOOKS} \]

 \[\sigma_{\text{Publisher} = 'McGraw-Hill' \land \text{Year < 1990}}(\text{BOOKS}) \]
• **List the name of those authors who are living in Davis.**

\[\pi_{\text{AName}}(\sigma_{\text{Address like 'Davis'}}(\text{AUTHORS})) \]

• **List the name of students who are older than 30 and who are not studying CS.**

\[\pi_{\text{StName}}(\sigma_{\text{Age}>30}(\text{STUDENTS})) - \pi_{\text{StName}}(\sigma_{\text{Major}='CS'}(\text{STUDENTS})) \]

• **Rename AName in the relation AUTHORS to Name.**

\[\rho_{\text{AUTHORS}}(\text{Name, Address})(\text{AUTHORS}) \]
Composed Queries (formal definition)

- A basic expression in the relational algebra consists of either of the following:
 - A relation in the database
 - A constant relation
 (fixed set of tuples, e.g., \{(1, 2), (1, 3), (2, 3)\})

- If \(E_1\) and \(E_2\) are expressions of the relational algebra, then the following expressions are relational algebra expressions, too:
 - \(E_1 \cup E_2\)
 - \(E_1 - E_2\)
 - \(E_1 \times E_2\)
 - \(\sigma_P(E_1)\) where \(P\) is a predicate on attributes in \(E_1\)
 - \(\pi_A(E_1)\) where \(A\) is a list of some of the attributes in \(E_1\)
 - \(\rho_x(E_1)\) where \(x\) is the new name for the result relation [and its attributes] determined by \(E_1\)
Examples of Composed Queries

1. List the names of all students who have borrowed a book and who are CS majors.

\[\pi_{\text{StName}} \left(\sigma_{\text{STUDENTS.StId}=\text{borrows.StId}} \left(\sigma_{\text{Major}='CS'} \left(\text{STUDENTS} \times \text{borrows} \right) \right) \right) \]

2. List the title of books written by the author 'Silberschatz'.

\[\pi_{\text{Title}} \left(\sigma_{\text{AName}='Silberschatz'} \left(\sigma_{\text{has-written.DocId}=\text{BOOKS.DocId}} \left(\text{has-written} \times \text{BOOKS} \right) \right) \right) \quad \text{or} \quad \pi_{\text{Title}} \left(\sigma_{\text{has-written.DocId}=\text{BOOKS.DocId}} \left(\sigma_{\text{AName}='Silberschatz'} \left(\text{has-written} \times \text{BOOKS} \right) \right) \right) \]

3. As 2., but not books that have the keyword 'database'.

\[\ldots \text{as for 2.} \ldots \]

\[\pi_{\text{Title}} \left(\sigma_{\text{describes.DocId}=\text{BOOKS.DocId}} \left(\sigma_{\text{Keyword}='database'} \left(\text{describes} \times \text{BOOKS} \right) \right) \right) \]

4. Find the name of the youngest student.

\[\pi_{\text{StName}} \left(\text{STUDENTS} \right) - \pi_{S1.\text{StName}} \left(\sigma_{S1.\text{Age}>S2.\text{Age}} \left(\rho_{S1}(\text{STUDENTS}) \times \rho_{S2}(\text{STUDENTS}) \right) \right) \]

5. Find the title of the oldest book.

\[\pi_{\text{Title}} \left(\text{BOOKS} \right) - \pi_{B1.\text{Title}} \left(\sigma_{B1.\text{Year}>B2.\text{Year}} \left(\rho_{B1}(\text{BOOKS}) \times \rho_{B2}(\text{BOOKS}) \right) \right) \]
Additional Operators

These operators do not add any power (expressiveness) to the relational algebra but simplify common (often complex and lengthy) queries.

- **Set-Intersection** \(\cap \)
- **Natural Join** \(\bowtie \)
- **Condition Join** \(\bowtie_C \) (also called Theta-Join)
- **Division** \(\div \)
- **Assignment** \(\leftarrow \)

Set-Intersection

- **Notation:** \(r \cap s \)
 - Defined as \(r \cap s := \{ t \mid t \in r \text{ and } t \in s \} \)
- **For** \(r \cap s \) **to be applicable,**
 1. \(r \) and \(s \) **must have the same arity**
 2. Attribute domains must be compatible
- **Derivation:** \(r \cap s = r - (r - s) \)
- **Example:** given the relations \(r \) and \(s \)

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r)</td>
<td>(\alpha)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(\alpha)</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>(\beta)</td>
<td>1</td>
</tr>
<tr>
<td>(s)</td>
<td>(\alpha)</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>(\beta)</td>
<td>3</td>
</tr>
<tr>
<td>(r \cap s)</td>
<td>(\alpha)</td>
<td>2</td>
</tr>
</tbody>
</table>
Natural Join

- **Notation:** \(r \bowtie s \)

- Let \(r \) and \(s \) be relations on schemas \(R \) and \(S \), respectively. The result is a relation on schema \(R \cup S \). The result tuples are obtained by considering each pair of tuples \(t_r \in r \) and \(t_s \in s \).

- If \(t_r \) and \(t_s \) have the same value for each of the attributes in \(R \cap S \) (“same name attributes”), a tuple \(t \) is added to the result such that
 - \(t \) has the same value as \(t_r \) on \(r \)
 - \(t \) has the same value as \(t_s \) on \(s \)

- **Example:** Given the relations \(R(A, B, C, D) \) and \(S(B, D, E) \)
 - Join can be applied because \(R \cap S \neq \emptyset \)
 - the result schema is \((A, B, C, D, E) \)
 - and the result of \(r \bowtie s \) is defined as

\[
\pi_{r.A,r.B,r.C,r.D,s.E}(\sigma_{r.B=s.B}\land r.D=s.D(r \times s))
\]
• Example: given the relations r and s

<table>
<thead>
<tr>
<th></th>
<th>r</th>
<th></th>
<th>s</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>α</td>
<td>1</td>
<td>α</td>
<td>a</td>
<td>α</td>
</tr>
<tr>
<td>β</td>
<td>2</td>
<td>γ</td>
<td>a</td>
<td>β</td>
</tr>
<tr>
<td>γ</td>
<td>4</td>
<td>β</td>
<td>b</td>
<td>γ</td>
</tr>
<tr>
<td>α</td>
<td>1</td>
<td>γ</td>
<td>a</td>
<td>α</td>
</tr>
<tr>
<td>δ</td>
<td>2</td>
<td>β</td>
<td>b</td>
<td>δ</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>$r \bowtie s$</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>α</td>
<td>1</td>
<td>α</td>
</tr>
<tr>
<td>α</td>
<td>1</td>
<td>α</td>
</tr>
<tr>
<td>α</td>
<td>1</td>
<td>γ</td>
</tr>
<tr>
<td>α</td>
<td>1</td>
<td>γ</td>
</tr>
<tr>
<td>δ</td>
<td>2</td>
<td>β</td>
</tr>
</tbody>
</table>
Condition Join

- **Notation:** $r \bowtie_C s$

 C is a condition on attributes in $R \cup S$, result schema is the same as that of Cartesian Product. If $R \cap S \neq \emptyset$ and condition C refers to these attributes, some of these attributes must be renamed.

 Sometimes also called *Theta Join* ($r \bowtie_{\theta} s$).

- **Derivation:** $r \bowtie_C s = \sigma_C(r \times s)$

- **Note that** C is a condition on attributes from both r and s

- **Example:** given two relations r, s

 r

 \[
 \begin{array}{ccc}
 A & B & C \\
 1 & 2 & 3 \\
 4 & 5 & 6 \\
 7 & 8 & 9 \\
 \end{array}
 \]

 s

 \[
 \begin{array}{cc}
 D & E \\
 3 & 1 \\
 6 & 2 \\
 \end{array}
 \]

 $r \bowtie_{B < D} s$

 \[
 \begin{array}{cccccc}
 A & B & C & D & E \\
 1 & 2 & 3 & 3 & 1 \\
 1 & 2 & 3 & 6 & 2 \\
 4 & 5 & 6 & 6 & 2 \\
 \end{array}
 \]
If C involves only the comparison operator “$=$”, the condition join is also called *Equi-Join*.

- **Example 2:**

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>r</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>12</td>
</tr>
</tbody>
</table>

$r \bowtie_{C=SC} (\rho_{S(SC,D)}(s))$

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>SC</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>8</td>
</tr>
</tbody>
</table>
Division

- Notation: \(r \div s \)
- Precondition: attributes in \(S \) must be a subset of attributes in \(R \), i.e., \(S \subseteq R \). Let \(r, s \) be relations on schemas \(R \) and \(S \), respectively, where

 \[
 \begin{align*}
 &- R(A_1, \ldots, A_m, B_1, \ldots, B_n) \\
 &- S(B_1, \ldots, B_n)
 \end{align*}
 \]

 The result of \(r \div s \) is a relation on schema \(R - S = (A_1, \ldots, A_m) \)

- Suited for queries that include the phrase “for all”.

 The result of the division operator consists of the set of tuples from \(r \) defined over the attributes \(R - S \) that match the combination of every tuple in \(s \).

 \[
 r \div s := \{ t | t \in \pi_{R - S}(r) \land \forall u \in s : tu \in r \}
 \]
Example: given the relations r, s:

$$
\begin{array}{|c|c|c|c|c|}
\hline
A & B & C & D & E \\
\hline
\alpha & a & \alpha & a & 1 \\
\alpha & a & \gamma & a & 1 \\
\alpha & a & \gamma & b & 1 \\
\beta & a & \gamma & a & 1 \\
\beta & a & \gamma & b & 3 \\
\gamma & a & \gamma & a & 1 \\
\gamma & a & \gamma & b & 1 \\
\gamma & a & \beta & b & 1 \\
\hline
\end{array}
$$

$$
\begin{array}{|c|c|}
\hline
D & E \\
\hline
a & 1 \\
b & 1 \\
\hline
\end{array}
$$

$$
\begin{array}{|c|c|}
\hline
A & B \\
\hline
\alpha & a \\
\gamma & a \\
\hline
\end{array}
\div
\begin{array}{|c|}
\hline
C \\
\hline
\gamma \\
\hline
\end{array}
$$
Assignment

- Operation (←—) that provides a convenient way to express complex queries.
 Idea: write query as sequential program consisting of a series of assignments followed by an expression whose value is “displayed” as the result of the query.

- Assignment must always be made to a temporary relation variable.
 The result to the right of ←— is assigned to the relation variable on the left of the ←—. This variable may be used in subsequent expressions.

Example Queries

1. List each book with its keywords.

 BOOKS ⋈ Descriptions

 Note that books having no keyword are not in the result.

2. List each student with the books s/he has borrowed.

 BOOKS ⋈ (borrows ⋈ STUDENTS)
3. List the title of books written by the author 'Ullman'.
\[\pi_{Title}(\sigma_{AName='Ullman'}(BOOKS \bowtie \text{has-written})) \]

or
\[\pi_{Title}(BOOKS \bowtie \sigma_{AName='Ullman'}(\text{has-written})) \]

4. List the authors of the books the student 'Smith' has borrowed.
\[\pi_{AName}(\sigma_{StName='Smith'}(\text{has-written} \bowtie (\text{borrows} \bowtie \text{STUDENTS})) \]

5. Which books have both keywords 'database' and 'programming'?
\[\text{BOOKS} \bowtie \left(\pi_{DocId}(\sigma_{Keyword='database'}(\text{Descriptions})) \cap \pi_{DocId}(\sigma_{Keyword='programming'}(\text{Descriptions})) \right) \]

or
\[\text{BOOKS} \bowtie (\text{Descriptions} / \{('database'), ('programming')\}) \]

with \{('database'), ('programming')\} being a constant relation.

6. Query 4 using assignments.
\[\text{temp1} \leftarrow \text{borrows} \bowtie \text{STUDENTS} \]
\[\text{temp2} \leftarrow \text{has-written} \bowtie \text{temp1} \]
\[\text{result} \leftarrow \pi_{AName}(\sigma_{StName='Smith'}(\text{temp2})) \]
Modifications of the Database

- The content of the database may be modified using the operations \textit{insert}, \textit{delete} or \textit{update}.
- Operations can be expressed using the assignment operator.
 \[r_{new} \leftarrow \text{operations on}(r_{old}) \]

\textbf{Insert}

- Either specify tuple(s) to be inserted, or write a query whose result is a set of tuples to be inserted.
- \[r \leftarrow r \cup E, \text{ where } r \text{ is a relation and } E \text{ is a relational algebra expression.} \]
- \[\text{STUDENTS} \leftarrow \text{STUDENTS} \cup \{(1024, 'Clark', 'CSE', 26)\} \]

\textbf{Delete}

- Analogous to insert, but \(-\) operator instead of \(\cup\) operator.
- Can only delete whole tuples, cannot delete values of particular attributes.
- \[\text{STUDENTS} \leftarrow \text{STUDENTS} - (\sigma_{\text{major='CS'}}(\text{STUDENTS})) \]

\textbf{Update}

- Can be expressed as sequence of delete and insert operations. Delete operation deletes tuples with their old value(s) and insert operation inserts tuples with their new value(s).