Class Agenda

• Last time:
 – Query evaluation techniques; external sorting

• Today:
 – Finish with external sorting
 – Physical query operators

• Reading
 – Chapters 13 and 14 of Ramakrishnan and Gehrke (or Chapter 13 of Silberschatz et al)
Announcements

Grades for Part 1: Monday

Quiz #1 in class next Wednesday (now reflected on web page); review session in class Monday

Quiz #2 (along with "Awards Ceremony") **will be during final exam slot**
External Sorting, continued
Using B+ Trees for Sorting

- Scenario: table to be sorted has B+ tree index on sorting column(s)
- Idea: can retrieve records in order by traversing leaf pages
- Is this a good idea?
- Cases to consider:
 - B+ tree is clustered \textit{Good idea!}
 - B+ tree is not clustered \textit{Could be a very bad idea!}
Clustered B+ Tree Used for Sorting

- Cost: root to the leftmost leaf, then retrieve all leaf pages (index is clustered)
- Each page fetched just once
- Always better than external sorting!
Unclustered B+ Tree Used for Sorting

- Leaves of tree have record ids, rather than records themselves
- In worst case, one I/O per data record!
External Sorting vs Unclustered Index

<table>
<thead>
<tr>
<th># of data pages</th>
<th>Unclustered index</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>1,000</td>
<td>1,000</td>
</tr>
<tr>
<td>10,000</td>
<td>10,000</td>
</tr>
<tr>
<td>100,000</td>
<td>100,000</td>
</tr>
<tr>
<td>1,000,000</td>
<td>1,000,000</td>
</tr>
<tr>
<td>10,000,000</td>
<td>10,000,000</td>
</tr>
</tbody>
</table>

- $p = \#$ of records per page
- $B = 1000$ and block size = 32 for external sorting
- $p = 100$ is the more realistic value
Summary of External Sorting

• External sorting is important; DBMS may dedicate part of buffer pool for sorting!

• External merge sort minimizes disk I/O cost

 – Pass 0: produces sorted runs of size B (# of buffer pages)

 – # of runs merged at a time depends on B and block size

 – Larger block size means less I/O cost per page

 – Larger block size means smaller # runs merged

 – In practice, # of runs rarely more than 2 or 3
• 2-way merge sort can be generalized to n-way merge sort, using as many internal buffer pages as we have available.
Physical Relational Operators, Part 1: Joins
Relational Operations

• We will consider how to implement:
 – **Selection** (σ) Selects a subset of rows from relation
 – **Projection** (π) Deletes/reorders columns from relation
 – **Join** ($\&$) Allows us to combine two relations
 – **Difference** (−) Tuples in one relation, but not the other
 – **Union** (U) Tuples in either relation
 – **Aggregation** SUM, MIN, etc. and GROUP BY

• Since each operation returns a relation, operations can be composed.

• After we cover the operations in isolation, we will discuss how to optimize queries formed by composing them
Schema for Running Examples

Sailors(sid: integer, $sname$: string, $rating$: integer, age: float)

Reserves(sid: integer, bid: integer, day: date, $rname$: string)

- Reserves: each tuple is 40 bytes long, 100 tuples per page, 1000 pages
- Sailors: each tuple is 50 bytes long, 80 tuples per page, 500 pages
Equality Joins With One Join Column

select *
from Reserves R, Sailors S
where R.sid = S.sid

• Common! Must be carefully optimized. \(R \times S \) is large, so \(R \times S \) followed by selection is inefficient

• Assume: \(M \) tuples in \(R \), \(p_R \) tuples per page, \(N \) tuples in \(S \), \(p_S \) tuples per page

 — In our examples, \(R \) is Reserves and \(S \) is Sailors

• Will consider more complex join conditions later

• **Cost metric:** # of I/Os
Simple Nested Loops Join

for each tuple r in R do
 for each tuple s in S do
 if r and s agree on join attribute then
 add $<r,s>$ to result

• For each tuple in the outer relation R, we can the entire inner relation S

 – Cost: $M + p_R \times M \times N = 1000 + 100\times1000\times500$ I/Os

• Page-oriented nested loops join: for each page of R, get each page of S, and write out matching pairs of tuples $<r,s>$ where r is in R-page and s is in S-page

 – Cost: $M + M \times N = 1000 + 1000\times500$
Index Nested Loops Join

for each tuple \(r \) in \(R \) do
 for each tuple \(s \) in \(S \) do
 if \(r \) and \(s \) agree on join attribute then
 add \(<r,s> \) to result

• If there is an index on the join attribute of one relation (say \(S \)), can make it the inner and exploit the index
 – Cost: \(M + ((M \times p_R) \times \text{cost of finding matching } S \text{ tuples}) \)

• For each \(R \) tuple, cost of probing \(S \) index is about 1.2 for hash index, 2-4 for B+ tree. Cost of then finding \(S \) tuples depends on clustering
 – Clustered index: usually 1 I/O per group of tuples with a given key;
 unclustered: up to 1 I/O per tuple in group of tuples with a given key
Block Nested Loops Join

- Use one page as an input buffer for scanning the inner S, one page as the output buffer, and all remaining pages to hold block of outer R
 - For each matching tuple r in R-block, s in S-page, add <r,s> to result. Then read next R-block, scan S, and repeat.
Sort-Merge Join

• Sort R and S on the join attribute, then scan them to do a \textit{merge} (on join attribute), and output result tuples

 – Advance scan of R until current R-tuple \geq current S-tuple, then advanced scan of S until current S-tuple \geq current R-tuple; do this until current R-tuple = current S-tuple

 – At this point, R-tuple \textit{matches} current S-tuple (and all following S-tuples with same value); output $<r,s>$ for all pairs of such tuples

 – Then resume scanning R and S

• R is scanned once; each S "group" is scanned once per matching R tuple.
Example of Sort-Merge Join

<table>
<thead>
<tr>
<th>sid</th>
<th>sname</th>
<th>rating</th>
<th>age</th>
<th>bid</th>
<th>day</th>
<th>rname</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>dustin</td>
<td>7</td>
<td>45.0</td>
<td>103</td>
<td>12/4/96</td>
<td>guppy</td>
</tr>
<tr>
<td>28</td>
<td>puppy</td>
<td>9</td>
<td>35.0</td>
<td>103</td>
<td>11/3/96</td>
<td>puppy</td>
</tr>
<tr>
<td>31</td>
<td>lubber</td>
<td>8</td>
<td>55.5</td>
<td>101</td>
<td>10/10/96</td>
<td>dustin</td>
</tr>
<tr>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td>102</td>
<td>10/12/96</td>
<td>lubber</td>
</tr>
<tr>
<td>58</td>
<td>guppy</td>
<td>5</td>
<td>35.0</td>
<td>101</td>
<td>10/11/96</td>
<td>lubber</td>
</tr>
<tr>
<td>58</td>
<td>rusty</td>
<td>10</td>
<td>35.0</td>
<td>103</td>
<td>11/12/96</td>
<td>dustin</td>
</tr>
</tbody>
</table>

- Cost: $M \log M + N \log N + \sim (M + N)$
 - In worst case $M + N$ could actually be $M*N$, but unlikely
Refinement of Sort-Merge Join

We can combine the merging phases in the *sorting* of R and S with the merging required for the join.

- With $B > \sqrt{L}$, where L is the size of the larger relation, using the sorting refinement that produces runs of length $2B$ in Pass 0, the number of runs is less than $B/2$.
- Allocate 1 page per run of each relation, and `merge’ while checking the join condition.
- Cost: read+write each relation in Pass 0 + read each relation in (only) merging pass (+ writing of result tuples).
- In example, cost goes down from 7500 to 4500 I/Os.

In practice, cost of sort-merge join, like the cost of external sorting, is linear.
Hash Join

- Partition both relations using hash function h: R tuples in partition i will only match S tuples in partition i.
- Read in a partition of R, hash it using h' ($\neq h$!). Scan matching partition of S, search for matches.