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Today’s Tutorial, or,
Datalog: Taste it Again for the First Time

• We review the basics and examine several of 
these recent applications

• Theme #1: lots of compelling applications, if we 
look beyond payroll / bill-of-materials / ...

– Some of the most interesting work coming from 
outside databases community!

• Theme #2: language extensions usually needed

– To go from a toy language to something really usable
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An Interactive Tutorial

• INSTALL_LB : installation guide

• README : structure of distribution files

• Quick-Start guide : usage

• *.logic : Datalog examples

• *.lb  : LogicBlox interactive shell script (to drive the Datalog
examples)

• Shan Shan and other LogicBlox folks will be available 
immediately after talk for the “synchronous” version of 
tutorial
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Outline of Tutorial

June 14, 2011: The Second Coming of Datalog!

• Refresher: Datalog 101

• Application #1: Data Integration and Exchange

• Application #2: Program Analysis

• Application #3: Declarative Networking

• Conclusions
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<result>  <condition1>, <condition2>, … , <conditionN>.

Datalog rule syntax: 
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Datalog Refresher: Syntax of Rules

<result>  <condition1>, <condition2>, … , <conditionN>.

Datalog rule syntax: 

Body consists of one or more conditions (input tables)

Head is an output table

 Recursive rules: result of head in rule body

BodyHead
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Example: All-Pairs Reachability

R2: reachable(S,D) <- link(S,Z), reachable(Z,D).

R1: reachable(S,D) <- link(S,D).

Input: link(source, destination)

Output: reachable(source, destination)
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Example: All-Pairs Reachability

R2: reachable(S,D) <- link(S,Z), reachable(Z,D).

R1: reachable(S,D) <- link(S,D).

Input: link(source, destination)

Output: reachable(source, destination)

link(a,b) – “there is a link from node a to node b”
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Example: All-Pairs Reachability

R2: reachable(S,D) <- link(S,Z), reachable(Z,D).

R1: reachable(S,D) <- link(S,D).

Input: link(source, destination)

Output: reachable(source, destination)

“For all nodes S,D,
If there is a link from S to D, then S can reach D”.
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Example: All-Pairs Reachability

R2: reachable(S,D) <- link(S,Z), reachable(Z,D).

R1: reachable(S,D) <- link(S,D).

Input: link(source, destination)

Output: reachable(source, destination)

“For all nodes S,D and Z,
If there is a link from S to Z, AND Z can reach D, then S can reach D”.
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Terminology and Convention

• An atom is a predicate, or relation name with arguments.

• Convention: Variables begin with a capital, predicates begin with 
lower-case.

• The head is an atom; the body is the AND of one or more atoms.

• Extensional database predicates (EDB) – source tables

• Intensional database predicates (IDB) – derived tables

reachable(S,D) <- link(S,Z), reachable(Z,D) .
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Negated Atoms

• We may put ! (NOT) in front of a atom, to negate its meaning.
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Negated Atoms

• We may put ! (NOT) in front of a atom, to negate its meaning.

 

Not “cut” in Prolog. 
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Negated Atoms

• We may put ! (NOT) in front of a atom, to negate its meaning.

• Example: For any given node S, return all nodes D that are two 
hops away, where D is not an immediate neighbor of S.

Not “cut” in Prolog. 

twoHop(S,D) 
<- link(S,Z),

link(Z,D)
! link(S,D).

Z DS
link(S,Z) link(Z,D)
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Safe Rules

• Safety condition:

– Every variable in the rule must occur in a positive (non-
negated) relational atom in the rule body.

– Ensures that the results of programs are finite, and that 
their results depend only on the actual contents of the 
database.
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Safe Rules

• Safety condition:

– Every variable in the rule must occur in a positive (non-
negated) relational atom in the rule body.

– Ensures that the results of programs are finite, and that 
their results depend only on the actual contents of the 
database.

• Examples of unsafe rules:

– s(X) <- r(Y).

– s(X) <- r(Y), ! r(X).
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Semantics
• Model-theoretic

— Most “declarative”. Based on model-theoretic semantics of first order 
logic. View rules as logical constraints.  

— Given input DB I and Datalog program P, find the smallest possible DB 
instance I’ that extends I and satisfies all constraints in P.
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instance I’ that extends I and satisfies all constraints in P.

• Fixpoint-theoretic

— Most “operational”. Based on the immediate consequence operator for 
a Datalog program. 

— Least fixpoint is reached after finitely many iterations of the immediate 
consequence operator.

— Basis for practical, bottom-up evaluation strategy.
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Semantics
• Model-theoretic

— Most “declarative”. Based on model-theoretic semantics of first order 
logic. View rules as logical constraints.  

— Given input DB I and Datalog program P, find the smallest possible DB 
instance I’ that extends I and satisfies all constraints in P.

• Fixpoint-theoretic

— Most “operational”. Based on the immediate consequence operator for 
a Datalog program. 

— Least fixpoint is reached after finitely many iterations of the immediate 
consequence operator.

— Basis for practical, bottom-up evaluation strategy.

• Proof-theoretic

— Set of provable facts obtained from Datalog program given input DB.

— Proof of given facts (typically, top-down Prolog style reasoning)
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The “Naïve” Evaluation Algorithm

1. Start by assuming all IDB 
relations are empty.

2. Repeatedly evaluate the rules 
using the EDB and the previous 
IDB, to get a new IDB.

3. End when no change to IDB.

Start:
IDB = 0

Apply rules
to IDB, EDB

Change
to IDB?

no

yes

done
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Naïve Evaluation

reachable link

reachable(S,D) <- link(S,D).
reachable(S,D)  <- link(S,Z),

reachable(Z,D). 

44



Naïve Evaluation

reachable link

reachable(S,D) <- link(S,D).
reachable(S,D)  <- link(S,Z),

reachable(Z,D). 

45



Naïve Evaluation

reachable link

reachable(S,D) <- link(S,D).
reachable(S,D)  <- link(S,Z),

reachable(Z,D). 

46



Naïve Evaluation

reachable link

reachable(S,D) <- link(S,D).
reachable(S,D)  <- link(S,Z),

reachable(Z,D). 

47



Naïve Evaluation

reachable link

reachable(S,D) <- link(S,D).
reachable(S,D)  <- link(S,Z),

reachable(Z,D). 

48



Naïve Evaluation

reachable link

reachable(S,D) <- link(S,D).
reachable(S,D)  <- link(S,Z),

reachable(Z,D). 

49



Naïve Evaluation

reachable link

reachable(S,D) <- link(S,D).
reachable(S,D)  <- link(S,Z),

reachable(Z,D). 

50



Naïve Evaluation
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reachable(S,D) <- link(S,D).
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Semi-naïve Evaluation

• Since the EDB never changes, on each round we only 
get new IDB tuples if we use at least one IDB tuple
that was obtained on the previous round.

• Saves work; lets us avoid rediscovering most known 
facts.

– A fact could still be derived in a second way.
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Semi-naïve Evaluation

reachable link

reachable(S,D) <- link(S,D).
reachable(S,D)  <- link(S,Z),

reachable(Z,D). 
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Recursion with Negation

reachable(S,D) <- link(S,D).
reachable(S,D)  <- link(S,Z), reachable(Z,D). 
unreachable(S,D) <- node(S), node(D), ! reachable(S,D).

Example: to compute all pairs of disconnected nodes in 
a graph.
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Recursion with Negation

reachable(S,D) <- link(S,D).
reachable(S,D)  <- link(S,Z), reachable(Z,D). 
unreachable(S,D) <- node(S), node(D), ! reachable(S,D).

Example: to compute all pairs of disconnected nodes in 
a graph.

--

Stratum 0 reachable

Stratum 1 unreachable Precedence graph :
Nodes = IDB predicates.
Edge q <- p if predicate 
q depends on p.
Label this arc “–” if the 
predicate p  is negated.
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Stratified Negation

• Straightforward syntactic restriction.
• When the Datalog program is stratified, we can evaluate 

IDB predicates lowest-stratum-first.
• Once evaluated, treat it as EDB for higher strata.
 

Stratum 0 reachable

Stratum 1 unreachablereachable(S,D) <- link(S,D).
reachable(S,D)  <- link(S,Z),

reachable(Z,D).
unreachable(S,D)  <- node(S), 

node(D),  
! reachable(S,D).

--
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Stratified Negation

• Straightforward syntactic restriction.
• When the Datalog program is stratified, we can evaluate 

IDB predicates lowest-stratum-first.
• Once evaluated, treat it as EDB for higher strata.
 Non-stratified example: 

Stratum 0 reachable

Stratum 1 unreachablereachable(S,D) <- link(S,D).
reachable(S,D)  <- link(S,Z),

reachable(Z,D).
unreachable(S,D)  <- node(S), 

node(D),  
! reachable(S,D).

p(X) <- q(X), ! p(X).

--
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A Sneak Preview…

• Data integration

– Skolem functions

• Program analysis

– Type-based optimization

• Declarative networking

– Aggregates, aggregate selections

– Incremental view maintenance

– Magic sets
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Suggested Readings

• Survey papers:
• A Survey of Research on Deductive Database Systems, Ramakrishnan and Ullman, 

Journal of Logic Programming, 1993
• What you always wanted to know about datalog (and never dared to ask), by Ceri, 

Gottlob, and Tanca.
• An Amateur’s Expert’s Guide to Recursive Query Processing, Bancilhon and 

Ramakrishnan, SIGMOD Record.
• Database Encyclopedia entry on “DATALOG”. Grigoris Karvounarakis.

• Textbooks:
• Foundations in Databases. Abiteboul, Hull, Vianu.
• Database Management Systems, Ramakrishnan and Gehkre. Chapter on “Deductive 

Databases”.

• Acknowledgements:
• Jeff Ullman’s CIS 145 class lecture slides.
• Raghu Ramakrishnan and Johannes Gehrke’s lecture slides for Database 

Management Systems textbook.
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Outline of Tutorial

June 14, 2011: The Second Coming of Datalog!

• Refresher: Datalog 101

• Application #1: Data Integration and Exchange

• Application #2: Program Analysis

• Application #3: Declarative Networking

• Conclusions
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Datalog for Data Integration

• Motivation and problem setting

• Two basic approaches: 

– virtual data integration

– materialized data exchange

• Schema mappings and Datalog with Skolem 
functions
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The Data Integration Problem

• Have a collection of related data sources with

– different schemas

– different data models (relational, XML, plain text, ...)

– different attribute domains

– different capabilities / availability

• Need to cobble them together and provide a 
uniform interface

• Want to keep track of what came from where

• Focus here: solving problem of different schemas 
(schema heterogeneity) for relational data
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Mediator-Based Data Integration

Local data sources

Global mediated schema

Source schemas

? ? ? ?

Basic idea: use a global mediated schema to provide a uniform 
query interface for the heterogeneous data sources .
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Mediator-Based Virtual Data Integration

Local data sources

Global mediated schema

Declarative schema 
mappings

Source schemas

71



Mediator-Based Virtual Data Integration

Local data sources

Global mediated schema

Declarative schema 
mappings

Source schemas

Query over 
global schema

72



Mediator-Based Virtual Data Integration

Local data sources

Global mediated schema

Declarative schema 
mappings

Source schemas

Query over 
global schema

Reformulated 
query over 

local schemas

73



Mediator-Based Virtual Data Integration

Local data sources

Global mediated schema

Declarative schema 
mappings

Source schemas

Query over 
global schema

Reformulated 
query over 

local schemas

Query 
results

74



Mediator-Based Virtual Data Integration

Local data sources

Global mediated schema

Declarative schema 
mappings

Source schemas

Query over 
global schema

Reformulated 
query over 

local schemas

Query 
results

Integrated query 
results
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Mediator-Based Virtual Data Integration

Local data sources

Global mediated schema

Declarative schema 
mappings

Source schemas

Query over 
global schema

Reformulated 
query over 

local schemas

Query 
results

Integrated query 
results

Query may be 
recursive
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Mediator-Based Virtual Data Integration

Local data sources

Global mediated schema

Declarative schema 
mappings

Source schemas

Query over 
global schema

Reformulated 
query over 

local schemas

Query 
results

Integrated query 
results

Query may be 
recursive

Reformulation 
may be 
(necessarily) 
recursive 77



Materialized Data Exchange

Local data source(s)

Global mediated schema
(aka target schema)

Declarative schema 
mappings

Source schema(s)

Declarative schema 
mappings

78



Materialized Data Exchange

Local data source(s)

Global mediated schema
(aka target schema)

Declarative schema 
mappings

Source schema(s)

Declarative schema 
mappings

Mappings may be 
recursive
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Materialized Data Exchange

Local data source(s)

Global mediated schema
(aka target schema)

Declarative schema 
mappings

Source schema(s)

Declarative schema 
mappings
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Materialized Data Exchange

Local data source(s)

Global mediated schema
(aka target schema)

Declarative schema 
mappings

Source schema(s)

Declarative schema 
mappings

Data exchange step
(construct mediated DB)

81



Materialized Data Exchange

Local data source(s)

Global mediated schema
(aka target schema)

Declarative schema 
mappings

Source schema(s)

Declarative schema 
mappings

Data exchange step
(construct mediated DB)

82



Materialized Data Exchange

Local data source(s)

Global mediated schema
(aka target schema)

Declarative schema 
mappings

Source schema(s)

Declarative schema 
mappings

Data exchange step
(construct mediated DB)

83



Materialized Data Exchange

Local data source(s)

Global mediated schema
(aka target schema)

Declarative schema 
mappings

Source schema(s)

Declarative schema 
mappings

Data exchange step
(construct mediated DB)

84



Materialized Data Exchange
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Materialized Data Exchange
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Materialized Data Exchange

Local data source(s)
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Peer-to-Peer Data Integration 
(Virtual or Materialized)

Peer A

Peer B

Peer C

Peer D

Peer E
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Peer-to-Peer Data Integration 
(Virtual or Materialized)

Peer A

Peer B

Peer C

Peer D

Peer E

Recursion arises 
naturally as peers add 
mappings to each other
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Peer E

Query
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Peer-to-Peer Data Integration 
(Virtual or Materialized)

Peer A

Peer B

Peer C

Peer D

Peer E

Query
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Peer-to-Peer Data Integration 
(Virtual or Materialized)

Peer A

Peer B

Peer C

Peer D

Peer E

Query Results
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How to Specify Mappings?

• Many flavors of mapping specifications: LAV, GAV, 
GLAV, P2P, “sound” versus “exact”, ...

• Unifying formalism: integrity constraints

– different flavors of specifications correspond to different 
classes of integrity constraints 

• We focus on mappings specified using tuple-
generating dependencies (a kind of integrity 
constraint)

• These capture (sound) LAV and GAV as special cases, 
and much of GLAV and P2P as well

– and, close relationship with Datalog!
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Logical Schema Mappings via
Tuple-Generating Dependencies (tgds)

• A tuple-generating dependency (tgd) is a first-order 
constraint of the form

where ϕ and ψ are conjunctions of relational atoms

 

 

∀X ϕ(X) → ∃Yψ(X,Y)
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Logical Schema Mappings via
Tuple-Generating Dependencies (tgds)

• A tuple-generating dependency (tgd) is a first-order 
constraint of the form

where ϕ and ψ are conjunctions of relational atoms

For example:

“The name and address of every employee should also 
be recorded in the name and address tables, indexed 
by ssn.”

∀ Eid, Name, Addr  employee(Eid, Name, Addr) → 

∃ Ssn  name(Ssn, Name) ∧ address(Ssn, Addr)

∀X ϕ(X) → ∃Yψ(X,Y)
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What Answers Should Queries Return?

• Challenge: constraints leave problem “under-defined”: for given local source 
instance, many possible mediated instances may satisfy the constraints.
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What Answers Should Queries Return?

• Challenge: constraints leave problem “under-defined”: for given local source 
instance, many possible mediated instances may satisfy the constraints.

∀ Eid, Name, Addr  employee(Eid, Name, Addr) → 

∃ Ssn  name(Ssn, Name) ∧ address(Ssn, Addr)
CONSTRAINT:
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What Answers Should Queries Return?

• Challenge: constraints leave problem “under-defined”: for given local source 
instance, many possible mediated instances may satisfy the constraints.

∀ Eid, Name, Addr  employee(Eid, Name, Addr) → 

∃ Ssn  name(Ssn, Name) ∧ address(Ssn, Addr)

17 Alice 1 Main St

23 Bob 16 Elm St

employee

LOCAL SOURCE

CONSTRAINT:
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What Answers Should Queries Return?

• Challenge: constraints leave problem “under-defined”: for given local source 
instance, many possible mediated instances may satisfy the constraints.

∀ Eid, Name, Addr  employee(Eid, Name, Addr) → 

∃ Ssn  name(Ssn, Name) ∧ address(Ssn, Addr)

17 Alice 1 Main St

23 Bob 16 Elm St

employee

050-66 Alice

010-12 Bob

040-66 Carol

name

050-66 1 Main St

010-12 16 Elm St

040-66 7 11th Ave

address

LOCAL SOURCE MEDIATED DB #1

CONSTRAINT:
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What Answers Should Queries Return?

• Challenge: constraints leave problem “under-defined”: for given local source 
instance, many possible mediated instances may satisfy the constraints.

∀ Eid, Name, Addr  employee(Eid, Name, Addr) → 

∃ Ssn  name(Ssn, Name) ∧ address(Ssn, Addr)

17 Alice 1 Main St

23 Bob 16 Elm St

employee

050-66 Alice

010-12 Bob

040-66 Carol

name name

27 Alice

42 Bob

050-66 1 Main St

010-12 16 Elm St

040-66 7 11th Ave

address

27 1 Main St

42 16 Elm St

address

LOCAL SOURCE MEDIATED DB #1 MEDIATED DB #2

CONSTRAINT:
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What Answers Should Queries Return?

• Challenge: constraints leave problem “under-defined”: for given local source 
instance, many possible mediated instances may satisfy the constraints.

∀ Eid, Name, Addr  employee(Eid, Name, Addr) → 

∃ Ssn  name(Ssn, Name) ∧ address(Ssn, Addr)

17 Alice 1 Main St

23 Bob 16 Elm St

employee

050-66 Alice

010-12 Bob

040-66 Carol

name name

27 Alice

42 Bob

050-66 1 Main St

010-12 16 Elm St

040-66 7 11th Ave

address

27 1 Main St

42 16 Elm St

address

LOCAL SOURCE MEDIATED DB #1 MEDIATED DB #2

...

CONSTRAINT:

...ETC...

...
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What Answers Should Queries Return?

• Challenge: constraints leave problem “under-defined”: for given local source 
instance, many possible mediated instances may satisfy the constraints.

∀ Eid, Name, Addr  employee(Eid, Name, Addr) → 

∃ Ssn  name(Ssn, Name) ∧ address(Ssn, Addr)

17 Alice 1 Main St

23 Bob 16 Elm St

employee

050-66 Alice

010-12 Bob

040-66 Carol

name name

27 Alice

42 Bob

050-66 1 Main St

010-12 16 Elm St

040-66 7 11th Ave

address

27 1 Main St

42 16 Elm St

address

LOCAL SOURCE MEDIATED DB #1 MEDIATED DB #2

...

CONSTRAINT:

...ETC...

...Which mediated 
DB should be 
materialized?
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What Answers Should Queries Return?

• Challenge: constraints leave problem “under-defined”: for given local source 
instance, many possible mediated instances may satisfy the constraints.

∀ Eid, Name, Addr  employee(Eid, Name, Addr) → 

∃ Ssn  name(Ssn, Name) ∧ address(Ssn, Addr)

17 Alice 1 Main St

23 Bob 16 Elm St

employee

050-66 Alice

010-12 Bob

040-66 Carol

name name

27 Alice

42 Bob

050-66 1 Main St

010-12 16 Elm St

040-66 7 11th Ave

address

27 1 Main St

42 16 Elm St

address

LOCAL SOURCE MEDIATED DB #1 MEDIATED DB #2

...

CONSTRAINT:

QUERY:

...ETC...

...

q(Name) <- name(Ssn, Name), address(Ssn, _).

Which mediated 
DB should be 
materialized?
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What Answers Should Queries Return?

• Challenge: constraints leave problem “under-defined”: for given local source 
instance, many possible mediated instances may satisfy the constraints.

∀ Eid, Name, Addr  employee(Eid, Name, Addr) → 

∃ Ssn  name(Ssn, Name) ∧ address(Ssn, Addr)

17 Alice 1 Main St

23 Bob 16 Elm St

employee

050-66 Alice

010-12 Bob

040-66 Carol

name name

27 Alice

42 Bob

050-66 1 Main St

010-12 16 Elm St

040-66 7 11th Ave

address

27 1 Main St

42 16 Elm St

address

LOCAL SOURCE MEDIATED DB #1 MEDIATED DB #2

...

CONSTRAINT:

QUERY:

...ETC...

...

q(Name) <- name(Ssn, Name), address(Ssn, _).

What answers 
should q return? Which mediated 

DB should be 
materialized?
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Certain Answers Semantics
Basic idea: query should return those answers that would be 
present for any mediated DB instance (satisfying the constraints).
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Certain Answers Semantics

17 Alice 1 Main St

23 Bob 16 Elm St

employee

050-66 Alice

010-12 Bob

040-66 Carol

name name

27 Alice

42 Bob

050-66 1 Main St

010-12 16 Elm St

040-66 7 11th Ave

address

27 1 Main St

42 16 Elm St

address

LOCAL SOURCE MEDIATED DB #1 MEDIATED DB #2

...

...ETC...

...

Basic idea: query should return those answers that would be 
present for any mediated DB instance (satisfying the constraints).
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Certain Answers Semantics

17 Alice 1 Main St

23 Bob 16 Elm St

employee

050-66 Alice

010-12 Bob

040-66 Carol

name name

27 Alice

42 Bob

050-66 1 Main St

010-12 16 Elm St

040-66 7 11th Ave

address

27 1 Main St

42 16 Elm St

address

LOCAL SOURCE MEDIATED DB #1 MEDIATED DB #2

...

QUERY:

...ETC...

...q(Name) <-
name(Ssn, Name),
address(Ssn, _).

Basic idea: query should return those answers that would be 
present for any mediated DB instance (satisfying the constraints).
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Certain Answers Semantics

17 Alice 1 Main St

23 Bob 16 Elm St

employee

050-66 Alice

010-12 Bob

040-66 Carol

name name

27 Alice

42 Bob

050-66 1 Main St

010-12 16 Elm St

040-66 7 11th Ave

address

27 1 Main St

42 16 Elm St

address

LOCAL SOURCE MEDIATED DB #1 MEDIATED DB #2

...

QUERY:

...ETC...

...q(Name) <-
name(Ssn, Name),
address(Ssn, _).

Alice

Bob

Carol

q

Basic idea: query should return those answers that would be 
present for any mediated DB instance (satisfying the constraints).

117



Certain Answers Semantics

17 Alice 1 Main St

23 Bob 16 Elm St

employee

050-66 Alice

010-12 Bob

040-66 Carol

name name

27 Alice

42 Bob

050-66 1 Main St

010-12 16 Elm St

040-66 7 11th Ave

address

27 1 Main St

42 16 Elm St

address

LOCAL SOURCE MEDIATED DB #1 MEDIATED DB #2

...

QUERY:

...ETC...

...q(Name) <-
name(Ssn, Name),
address(Ssn, _).

Alice

Bob

Carol

q

Alice

Bob

q

Basic idea: query should return those answers that would be 
present for any mediated DB instance (satisfying the constraints).
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Certain Answers Semantics

17 Alice 1 Main St

23 Bob 16 Elm St

employee

050-66 Alice

010-12 Bob

040-66 Carol

name name

27 Alice

42 Bob

050-66 1 Main St

010-12 16 Elm St

040-66 7 11th Ave

address

27 1 Main St

42 16 Elm St

address

LOCAL SOURCE MEDIATED DB #1 MEDIATED DB #2

...

QUERY:

...ETC...

...q(Name) <-
name(Ssn, Name),
address(Ssn, _).

Alice

Bob

Carol

q

Alice

Bob

q

...

Basic idea: query should return those answers that would be 
present for any mediated DB instance (satisfying the constraints).
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Certain Answers Semantics

17 Alice 1 Main St

23 Bob 16 Elm St

employee

050-66 Alice

010-12 Bob

040-66 Carol

name name

27 Alice

42 Bob

050-66 1 Main St

010-12 16 Elm St

040-66 7 11th Ave

address

27 1 Main St

42 16 Elm St

address

LOCAL SOURCE MEDIATED DB #1 MEDIATED DB #2

...

QUERY:

...ETC...

...q(Name) <-
name(Ssn, Name),
address(Ssn, _).

Alice

Bob

Carol

q

Alice

Bob

q

...

Basic idea: query should return those answers that would be 
present for any mediated DB instance (satisfying the constraints).
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Certain Answers Semantics

17 Alice 1 Main St

23 Bob 16 Elm St

employee

050-66 Alice

010-12 Bob

040-66 Carol

name name

27 Alice

42 Bob

050-66 1 Main St

010-12 16 Elm St

040-66 7 11th Ave

address

27 1 Main St

42 16 Elm St

address

LOCAL SOURCE MEDIATED DB #1 MEDIATED DB #2

...

QUERY:

...ETC...

...q(Name) <-
name(Ssn, Name),
address(Ssn, _).

Alice

Bob

Carol

q

Alice

Bob

q

...

Basic idea: query should return those answers that would be 
present for any mediated DB instance (satisfying the constraints).
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Certain Answers Semantics

17 Alice 1 Main St

23 Bob 16 Elm St

employee

050-66 Alice

010-12 Bob

040-66 Carol

name name

27 Alice

42 Bob

050-66 1 Main St

010-12 16 Elm St

040-66 7 11th Ave

address

27 1 Main St

42 16 Elm St

address

LOCAL SOURCE MEDIATED DB #1 MEDIATED DB #2

...

QUERY:

...ETC...

...q(Name) <-
name(Ssn, Name),
address(Ssn, _).

Alice

Bob

Carol

q

Alice

Bob

q

...Alice

Bob

certain answers to q

= ∩ ∩

Basic idea: query should return those answers that would be 
present for any mediated DB instance (satisfying the constraints).
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Computing the Certain Answers

• A number of methods have been developed

– Bucket algorithm [Levy+ 1996]

– Minicon [Pottinger & Halevy 2000]

– Inverse rules method [Duschka & Genesereth 1997]

– ...

• We focus on the Datalog-based inverse rules 
method

• Same method works for both virtual data 
integration, and materialized data exchange

– Assuming constraints are given by tgds
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Inverse Rules: Computing Certain Answers 
with Datalog

• Basic idea: a tgd looks a lot like a Datalog rule (or rules)

 

 

 

∀ X, Y, Z foo(X,Y) ∧ bar(X,Z) → biz(Y,Z) ∧ baz(Z)

biz(X,Y,Z) <- foo(X,Y), bar(X,Z).
baz(Z) <- foo(X,Y), bar(X,Z).

tgd:

Datalog 
rules:
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Inverse Rules: Computing Certain Answers 
with Datalog

• Basic idea: a tgd looks a lot like a Datalog rule (or rules)

• So just interpret tgds as Datalog rules!  (“Inverse” rules.)  Can 
use these to compute the certain answers.

 

 

∀ X, Y, Z foo(X,Y) ∧ bar(X,Z) → biz(Y,Z) ∧ baz(Z)

biz(X,Y,Z) <- foo(X,Y), bar(X,Z).
baz(Z) <- foo(X,Y), bar(X,Z).

tgd:

Datalog 
rules:
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Inverse Rules: Computing Certain Answers 
with Datalog

• Basic idea: a tgd looks a lot like a Datalog rule (or rules)

• So just interpret tgds as Datalog rules!  (“Inverse” rules.)  Can 
use these to compute the certain answers.

– Why called “inverse” rules?  In work on LAV data integration, 
constraints written in the other direction, with sources thought of as 
views over the (hypothetical) mediated database instance

 

∀ X, Y, Z foo(X,Y) ∧ bar(X,Z) → biz(Y,Z) ∧ baz(Z)

biz(X,Y,Z) <- foo(X,Y), bar(X,Z).
baz(Z) <- foo(X,Y), bar(X,Z).

tgd:

Datalog 
rules:
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Inverse Rules: Computing Certain Answers 
with Datalog

• Basic idea: a tgd looks a lot like a Datalog rule (or rules)

• So just interpret tgds as Datalog rules!  (“Inverse” rules.)  Can 
use these to compute the certain answers.

– Why called “inverse” rules?  In work on LAV data integration, 
constraints written in the other direction, with sources thought of as 
views over the (hypothetical) mediated database instance

The catch: what to do about existentially quantified variables...

∀ X, Y, Z foo(X,Y) ∧ bar(X,Z) → biz(Y,Z) ∧ baz(Z)

biz(X,Y,Z) <- foo(X,Y), bar(X,Z).
baz(Z) <- foo(X,Y), bar(X,Z).

tgd:

Datalog 
rules:
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Inverse Rules: Computing Certain Answers 
with Datalog (2)

• Challenge: existentially quantified variables in tgds

 

 

 

∀ Eid, Name, Addr  employee(Eid, Name, Addr) → 

∃ Ssn  name(Ssn, Name) ∧ address(Ssn, Addr)
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Inverse Rules: Computing Certain Answers 
with Datalog (2)

• Challenge: existentially quantified variables in tgds

• Key idea: use Skolem functions

– think: “memoized value invention” (or “labeled nulls”)

 

∀ Eid, Name, Addr  employee(Eid, Name, Addr) → 

∃ Ssn  name(Ssn, Name) ∧ address(Ssn, Addr)

129



Inverse Rules: Computing Certain Answers 
with Datalog (2)

• Challenge: existentially quantified variables in tgds

• Key idea: use Skolem functions

– think: “memoized value invention” (or “labeled nulls”)

 

∀ Eid, Name, Addr  employee(Eid, Name, Addr) → 

∃ Ssn  name(Ssn, Name) ∧ address(Ssn, Addr)

name(ssn(Name, Addr), Name) <- employee(_, Name, Addr).
address(ssn(Name, Addr), Addr) <- employee(_, Name, Addr).
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Inverse Rules: Computing Certain Answers 
with Datalog (2)

• Challenge: existentially quantified variables in tgds

• Key idea: use Skolem functions

– think: “memoized value invention” (or “labeled nulls”)

 

∀ Eid, Name, Addr  employee(Eid, Name, Addr) → 

∃ Ssn  name(Ssn, Name) ∧ address(Ssn, Addr)

name(ssn(Name, Addr), Name) <- employee(_, Name, Addr).
address(ssn(Name, Addr), Addr) <- employee(_, Name, Addr).

ssn is a Skolem 
function
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Inverse Rules: Computing Certain Answers 
with Datalog (2)

• Challenge: existentially quantified variables in tgds

• Key idea: use Skolem functions

– think: “memoized value invention” (or “labeled nulls”)

 

∀ Eid, Name, Addr  employee(Eid, Name, Addr) → 

∃ Ssn  name(Ssn, Name) ∧ address(Ssn, Addr)

name(ssn(Name, Addr), Name) <- employee(_, Name, Addr).
address(ssn(Name, Addr), Addr) <- employee(_, Name, Addr).
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Inverse Rules: Computing Certain Answers 
with Datalog (2)

• Challenge: existentially quantified variables in tgds

• Key idea: use Skolem functions

– think: “memoized value invention” (or “labeled nulls”)

• Unlike SQL nulls, can join on Skolem values:

∀ Eid, Name, Addr  employee(Eid, Name, Addr) → 

∃ Ssn  name(Ssn, Name) ∧ address(Ssn, Addr)

name(ssn(Name, Addr), Name) <- employee(_, Name, Addr).
address(ssn(Name, Addr), Addr) <- employee(_, Name, Addr).
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Inverse Rules: Computing Certain Answers 
with Datalog (2)

• Challenge: existentially quantified variables in tgds

• Key idea: use Skolem functions

– think: “memoized value invention” (or “labeled nulls”)

• Unlike SQL nulls, can join on Skolem values:

∀ Eid, Name, Addr  employee(Eid, Name, Addr) → 

∃ Ssn  name(Ssn, Name) ∧ address(Ssn, Addr)

query _(Name,Addr) <-
name(Ssn,Name), 
address(Ssn,Addr).

name(ssn(Name, Addr), Name) <- employee(_, Name, Addr).
address(ssn(Name, Addr), Addr) <- employee(_, Name, Addr).
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Semantics of Skolem Functions in Datalog

 

 

 

 

 

 

 

 
135



Semantics of Skolem Functions in Datalog

• Skolem functions interpreted “as themselves,” like constants 
(Herbrand interpretations): not to be confused with user-
defined functions

– e.g., can think of interpretation of term 

ssn(“Alice”, “1 Main St”) 

as just the string (or null labeled by the string)

ssn(“Alice”, “1 Main St”)
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Semantics of Skolem Functions in Datalog

• Skolem functions interpreted “as themselves,” like constants 
(Herbrand interpretations): not to be confused with user-
defined functions

– e.g., can think of interpretation of term 

ssn(“Alice”, “1 Main St”) 

as just the string (or null labeled by the string)

ssn(“Alice”, “1 Main St”)

• Datalog programs with Skolem functions continue to have 
minimal models, which can be computed via, e.g., bottom-up 
seminaive evaluation

– Can show that the certain answers are precisely the query answers 
that contain no Skolem terms.  (We’ll revisit this shortly...)
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Semantics of Skolem Functions in Datalog

• Skolem functions interpreted “as themselves,” like constants 
(Herbrand interpretations): not to be confused with user-
defined functions

– e.g., can think of interpretation of term 

ssn(“Alice”, “1 Main St”) 

as just the string (or null labeled by the string)

ssn(“Alice”, “1 Main St”)

• Datalog programs with Skolem functions continue to have 
minimal models, which can be computed via, e.g., bottom-up 
seminaive evaluation

– Can show that the certain answers are precisely the query answers 
that contain no Skolem terms.  (We’ll revisit this shortly...)

• But: the models may now be infinite!
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Termination and Infinite Models

• Problem: Skolem terms “invent” new values, which might be 
fed back in a loop to “invent” more new values, ad infinitum
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Termination and Infinite Models

• Problem: Skolem terms “invent” new values, which might be 
fed back in a loop to “invent” more new values, ad infinitum

– e.g., “every manager has a manager”

 

 

manager(X) <-
employee(_, X, _) .

manager(m(X)) <-
manager(X).
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Termination and Infinite Models

• Problem: Skolem terms “invent” new values, which might be 
fed back in a loop to “invent” more new values, ad infinitum

– e.g., “every manager has a manager”

 

 

manager(X) <-
employee(_, X, _) .

manager(m(X)) <-
manager(X).

m is a Skolem 
function
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Termination and Infinite Models

• Problem: Skolem terms “invent” new values, which might be 
fed back in a loop to “invent” more new values, ad infinitum

– e.g., “every manager has a manager”

 

 

manager(X) <-
employee(_, X, _) .

manager(m(X)) <-
manager(X).

17 Alice 1 Main St

23 Bob 16 Elm St

employee
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Termination and Infinite Models

• Problem: Skolem terms “invent” new values, which might be 
fed back in a loop to “invent” more new values, ad infinitum

– e.g., “every manager has a manager”

 

 

manager(X) <-
employee(_, X, _) .

manager(m(X)) <-
manager(X).

17 Alice 1 Main St

23 Bob 16 Elm St

employee
m(Alice)

m(Bob)

m(m(Alice))

m(m(Bob))

m(m(m(Alice)))

...

manager
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Termination and Infinite Models

• Problem: Skolem terms “invent” new values, which might be 
fed back in a loop to “invent” more new values, ad infinitum

– e.g., “every manager has a manager”

• Option 1: let ‘er rip and see what happens!  (Coral, LB)

 

manager(X) <-
employee(_, X, _) .

manager(m(X)) <-
manager(X).

17 Alice 1 Main St

23 Bob 16 Elm St

employee
m(Alice)

m(Bob)

m(m(Alice))

m(m(Bob))

m(m(m(Alice)))

...

manager
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Termination and Infinite Models

• Problem: Skolem terms “invent” new values, which might be 
fed back in a loop to “invent” more new values, ad infinitum

– e.g., “every manager has a manager”

• Option 1: let ‘er rip and see what happens!  (Coral, LB)

• Option 2: use syntactic restrictions to ensure 
termination...

manager(X) <-
employee(_, X, _) .

manager(m(X)) <-
manager(X).

17 Alice 1 Main St

23 Bob 16 Elm St

employee
m(Alice)

m(Bob)

m(m(Alice))

m(m(Bob))

m(m(m(Alice)))

...

manager
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Ensuring Termination of Datalog Programs with 
Skolems via Weak Acyclicity

• Draw graph for Datalog program as follows:

manager(X) <-
employee(_, X, _) .

manager(m(X)) <-
manager(X).
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Ensuring Termination of Datalog Programs with 
Skolems via Weak Acyclicity

• Draw graph for Datalog program as follows:

manager(X) <-
employee(_, X, _) .

manager(m(X)) <-
manager(X).

(employee, 1)

(employee, 2)

(employee, 3)

(manager, 1)

vertex for each 
(predicate, index)
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Ensuring Termination of Datalog Programs with 
Skolems via Weak Acyclicity

• Draw graph for Datalog program as follows:

manager(X) <-
employee(_, X, _) .

manager(m(X)) <-
manager(X).

(employee, 1)

(employee, 2)

(employee, 3)

(manager, 1)

vertex for each 
(predicate, index)

variable occurs as arg #2 
to employee in body, 
arg #1 to manager in 

head
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Ensuring Termination of Datalog Programs with 
Skolems via Weak Acyclicity

• Draw graph for Datalog program as follows:

manager(X) <-
employee(_, X, _) .

manager(m(X)) <-
manager(X).

(employee, 1)

(employee, 2)

(employee, 3)

(manager, 1)

vertex for each 
(predicate, index)

variable occurs as arg #2 
to employee in body, 
arg #1 to manager in 

head

variable occurs as arg #1 to 
manager in body and as 

argument to Skolem (hence 
dashes) in arg #1 to manager

in head 149



Ensuring Termination of Datalog Programs with 
Skolems via Weak Acyclicity

• Draw graph for Datalog program as follows:

manager(X) <-
employee(_, X, _) .

manager(m(X)) <-
manager(X).

(employee, 1)

(employee, 2)

(employee, 3)

(manager, 1)

vertex for each 
(predicate, index)

variable occurs as arg #2 
to employee in body, 
arg #1 to manager in 

head

variable occurs as arg #1 to 
manager in body and as 

argument to Skolem (hence 
dashes) in arg #1 to manager

in head 150

• If graph contains no cycle through 
a dashed edge, then P is called 
weakly acyclic



Ensuring Termination of Datalog Programs with 
Skolems via Weak Acyclicity

• Draw graph for Datalog program as follows:

manager(X) <-
employee(_, X, _) .

manager(m(X)) <-
manager(X).

(employee, 1)

(employee, 2)

(employee, 3)

(manager, 1)

Cycle through 
dashed edge!

Not weakly 
acyclic 

vertex for each 
(predicate, index)

variable occurs as arg #2 
to employee in body, 
arg #1 to manager in 

head

variable occurs as arg #1 to 
manager in body and as 

argument to Skolem (hence 
dashes) in arg #1 to manager

in head 151

• If graph contains no cycle through 
a dashed edge, then P is called 
weakly acyclic



Ensuring Termination via Weak Acyclicity (2)

• Another example, this one weakly acyclic:
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Ensuring Termination via Weak Acyclicity (2)

• Another example, this one weakly acyclic:

name(ssn(Name,Addr),Name) 
<- emp(_,Name,Addr).

addr(ssn(Name,Addr),Addr) 
<- emp(_,Name,Addr).

query _(Name,Addr) 
<- name(Ssn,Name), 

address(Ssn,Addr) ;
_(Addr,Name).
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Ensuring Termination via Weak Acyclicity (2)

• Another example, this one weakly acyclic:

(emp, 2) (emp, 3)

(name, 1)

name(ssn(Name,Addr),Name) 
<- emp(_,Name,Addr).

addr(ssn(Name,Addr),Addr) 
<- emp(_,Name,Addr).

query _(Name,Addr) 
<- name(Ssn,Name), 

address(Ssn,Addr) ;
_(Addr,Name).

(name, 2)

(_, 1) (_, 2)

(addr, 1)

(addr, 2)

(emp, 1)
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Ensuring Termination via Weak Acyclicity (2)

• Another example, this one weakly acyclic:

(emp, 2) (emp, 3)

(name, 1)

name(ssn(Name,Addr),Name) 
<- emp(_,Name,Addr).

addr(ssn(Name,Addr),Addr) 
<- emp(_,Name,Addr).

query _(Name,Addr) 
<- name(Ssn,Name), 

address(Ssn,Addr) ;
_(Addr,Name).

(name, 2)

(_, 1) (_, 2)

(addr, 1)

(addr, 2)

(emp, 1)
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Ensuring Termination via Weak Acyclicity (2)

• Another example, this one weakly acyclic:

(emp, 2) (emp, 3)

(name, 1)

name(ssn(Name,Addr),Name) 
<- emp(_,Name,Addr).

addr(ssn(Name,Addr),Addr) 
<- emp(_,Name,Addr).

query _(Name,Addr) 
<- name(Ssn,Name), 

address(Ssn,Addr) ;
_(Addr,Name).

(name, 2)

(_, 1) (_, 2)

(addr, 1)

(addr, 2)

has cycle, but no 
cycle through 
dashed edge; 

weakly acyclic 

(emp, 1)
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Ensuring Termination via Weak Acyclicity (2)

• Another example, this one weakly acyclic:

(emp, 2) (emp, 3)

(name, 1)

Theorem: bottom-up evaluation of weakly acyclic Datalog 
programs with Skolems terminates in # steps polynomial in size 
of source database.

name(ssn(Name,Addr),Name) 
<- emp(_,Name,Addr).

addr(ssn(Name,Addr),Addr) 
<- emp(_,Name,Addr).

query _(Name,Addr) 
<- name(Ssn,Name), 

address(Ssn,Addr) ;
_(Addr,Name).

(name, 2)

(_, 1) (_, 2)

(addr, 1)

(addr, 2)

has cycle, but no 
cycle through 
dashed edge; 

weakly acyclic 

(emp, 1)

157



Once Computation Stops, What Do We Have?

158



Once Computation Stops, What Do We Have?

∀ Eid, Name, Addr  employee(Eid, Name, Addr) → 
∃ Ssn  name(Ssn, Name) ∧ address(Ssn, Addr)

tgd:

name(ssn(Name, Addr), Name) <- employee(_, Name, Addr).
address(ssn(Name, Addr), Addr) <- employee(_, Name, Addr).

datalog rules:
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Once Computation Stops, What Do We Have?

∀ Eid, Name, Addr  employee(Eid, Name, Addr) → 
∃ Ssn  name(Ssn, Name) ∧ address(Ssn, Addr)

17 Alice 1 Main St

23 Bob 16 Elm St

employee

LOCAL SOURCE

tgd:

name(ssn(Name, Addr), Name) <- employee(_, Name, Addr).
address(ssn(Name, Addr), Addr) <- employee(_, Name, Addr).

datalog rules:
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Once Computation Stops, What Do We Have?

∀ Eid, Name, Addr  employee(Eid, Name, Addr) → 
∃ Ssn  name(Ssn, Name) ∧ address(Ssn, Addr)

17 Alice 1 Main St

23 Bob 16 Elm St

employee name

ssn(A..) Alice

ssn(B..) Bob

ssn(A..) 1 Main St

ssn(B..) 16 Elm St

address

LOCAL SOURCE MEDIATED DB #2

tgd:

name(ssn(Name, Addr), Name) <- employee(_, Name, Addr).
address(ssn(Name, Addr), Addr) <- employee(_, Name, Addr).

datalog rules:
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Once Computation Stops, What Do We Have?

∀ Eid, Name, Addr  employee(Eid, Name, Addr) → 
∃ Ssn  name(Ssn, Name) ∧ address(Ssn, Addr)

17 Alice 1 Main St

23 Bob 16 Elm St

employee

050-66 Alice

010-12 Bob

040-66 Carol

name name

ssn(A..) Alice

ssn(B..) Bob

050-66 1 Main St

010-12 16 Elm St

040-66 7 11th Ave

address

ssn(A..) 1 Main St

ssn(B..) 16 Elm St

address

LOCAL SOURCE MEDIATED DB #1 MEDIATED DB #2

tgd:

name(ssn(Name, Addr), Name) <- employee(_, Name, Addr).
address(ssn(Name, Addr), Addr) <- employee(_, Name, Addr).

datalog rules:
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Once Computation Stops, What Do We Have?

∀ Eid, Name, Addr  employee(Eid, Name, Addr) → 
∃ Ssn  name(Ssn, Name) ∧ address(Ssn, Addr)

17 Alice 1 Main St

23 Bob 16 Elm St

employee

050-66 Alice

010-12 Bob

040-66 Carol

name name

ssn(A..) Alice

ssn(B..) Bob

050-66 1 Main St

010-12 16 Elm St

040-66 7 11th Ave

address

ssn(A..) 1 Main St

ssn(B..) 16 Elm St

address

LOCAL SOURCE MEDIATED DB #1 MEDIATED DB #2

...

tgd:

...

name

27 Alice

42 Bob

27 1 Main St

42 16 Elm St

address

MEDIATED DB #3

name(ssn(Name, Addr), Name) <- employee(_, Name, Addr).
address(ssn(Name, Addr), Addr) <- employee(_, Name, Addr).

datalog rules:
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Once Computation Stops, What Do We Have?

∀ Eid, Name, Addr  employee(Eid, Name, Addr) → 
∃ Ssn  name(Ssn, Name) ∧ address(Ssn, Addr)

17 Alice 1 Main St

23 Bob 16 Elm St

employee

050-66 Alice

010-12 Bob

040-66 Carol

name name

ssn(A..) Alice

ssn(B..) Bob

050-66 1 Main St

010-12 16 Elm St

040-66 7 11th Ave

address

ssn(A..) 1 Main St

ssn(B..) 16 Elm St

address

LOCAL SOURCE MEDIATED DB #1 MEDIATED DB #2

...

tgd:

...

name

27 Alice

42 Bob

27 1 Main St

42 16 Elm St

address

MEDIATED DB #3

Among all the mediated DB instances satisfying the constraints (solutions), #2 
above is universal: can be homomorphically embedded in any other solution.

name(ssn(Name, Addr), Name) <- employee(_, Name, Addr).
address(ssn(Name, Addr), Addr) <- employee(_, Name, Addr).

datalog rules:
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Once Computation Stops, What Do We Have?

∀ Eid, Name, Addr  employee(Eid, Name, Addr) → 
∃ Ssn  name(Ssn, Name) ∧ address(Ssn, Addr)

17 Alice 1 Main St

23 Bob 16 Elm St

employee

050-66 Alice

010-12 Bob

040-66 Carol

name name

ssn(A..) Alice

ssn(B..) Bob

050-66 1 Main St

010-12 16 Elm St

040-66 7 11th Ave

address

ssn(A..) 1 Main St

ssn(B..) 16 Elm St

address

LOCAL SOURCE MEDIATED DB #1 MEDIATED DB #2

...

tgd:

...

name

27 Alice

42 Bob

27 1 Main St

42 16 Elm St

address

MEDIATED DB #3

Among all the mediated DB instances satisfying the constraints (solutions), #2 
above is universal: can be homomorphically embedded in any other solution.

name(ssn(Name, Addr), Name) <- employee(_, Name, Addr).
address(ssn(Name, Addr), Addr) <- employee(_, Name, Addr).

datalog rules:
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Once Computation Stops, What Do We Have?

∀ Eid, Name, Addr  employee(Eid, Name, Addr) → 
∃ Ssn  name(Ssn, Name) ∧ address(Ssn, Addr)

17 Alice 1 Main St

23 Bob 16 Elm St

employee

050-66 Alice

010-12 Bob

040-66 Carol

name name

ssn(A..) Alice

ssn(B..) Bob

050-66 1 Main St

010-12 16 Elm St

040-66 7 11th Ave

address

ssn(A..) 1 Main St

ssn(B..) 16 Elm St

address

LOCAL SOURCE MEDIATED DB #1 MEDIATED DB #2

...

tgd:

...

name

27 Alice

42 Bob

27 1 Main St

42 16 Elm St

address

MEDIATED DB #3

Among all the mediated DB instances satisfying the constraints (solutions), #2 
above is universal: can be homomorphically embedded in any other solution.

name(ssn(Name, Addr), Name) <- employee(_, Name, Addr).
address(ssn(Name, Addr), Addr) <- employee(_, Name, Addr).

datalog rules:
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Universal Solutions Are Just What is 
Needed to Compute the Certain Answers
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Universal Solutions Are Just What is 
Needed to Compute the Certain Answers

 

Theorem: can compute certain answers to Datalog program q
over target/mediated schema by:

(1) evaluating q on materialized mediated DB (computed 
using inverse rules); then 

(2) crossing out rows containing Skolem terms.
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Universal Solutions Are Just What is 
Needed to Compute the Certain Answers

Proof (crux): use universality of materialized DB.

Theorem: can compute certain answers to Datalog program q
over target/mediated schema by:

(1) evaluating q on materialized mediated DB (computed 
using inverse rules); then 

(2) crossing out rows containing Skolem terms.
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Notes on Skolem Functions in Datalog

• Notion of weak acyclicity introduced by Deutsch and Popa, 
as a way to ensure termination of the chase procedure for 
logical dependencies (but applies to Datalog too).

• Crazy idea: what if we allow arbitrary use of Skolems, and 
forget about computing complete output idb’s bottom-up, 
but only partially enumerate their contents, on demand, 
using top-down evaluation?  

– And, while we’re at it, allow unsafe rules too?

• This is actually a beautiful idea: it’s called logic 
programming

– Skolem functions (aka “functor terms”) are how you build data 
structures like lists, trees, etc. in Prolog

– Resulting language is Turing-complete
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Summary: Datalog for 
Data Integration and Exchange

• Datalog serves as very nice language for schema 
mappings, as needed in data integration, provided 
we extend it with Skolem functions

– Can use Datalog to compute certain answers

– Fancier kinds of schema mappings than tgds require 
further language extensions; e.g., Datalog +/- [Cali et al 09]

• Can also extend Datalog to track various kinds of 
data provenance, very useful in data integration

– Using semiring-based framework [Green+ 07]
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Some Datalog-Based Data 
Integration/Exchange Systems

• Information Manifold [Levy+ 96]

– Virtual approach
– No recursion

• Clio [Miller+ 01]

– Materialized approach
– Skolem terms, no recursion, rich data model
– Ships as part of IBM WebSphere

• Orchestra CDSS [Ives+ 05]

– Materialized approach
– Skolem terms, recursion, provenance, 

updates
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Datalog for Data Integration: 
Some Open Issues

• Materialized data exchange: renewed need for 
efficient incremental view maintenance algorithms

– Source databases are dynamic entities, need to propagate 
changes

– Classical algorithm DRed [Gupta+ 93] often performs very 
badly; newer provenance-based algorithms [Green+ 07, Liu+ 

08] faster but incur space overhead; can we do better?

• Termination for Datalog with Skolems

– Improvements on weak ayclicity for chase termination, 
translate to Datalog; more permissive conditions always 
useful!

– Is termination even decidable?  (Undecidable if we allow 
Skolems and unsafe rules, of course.)
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Outline of Tutorial

June 14, 2011: The Second Coming of Datalog!

• Refresher: basics of Datalog

• Application #1: Data Integration and Exchange

• Application #2: Program Analysis

• Application #3: Declarative Networking

• Conclusion
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Program Analysis

• What is it?
 

 

• Why in Datalog?
 

• How does it work?
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Program Analysis

• What is it?
– Fundamental analysis aiding software development

– Help make programs run fast, help you find bugs

• Why in Datalog?
 

• How does it work?
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Program Analysis

• What is it?
– Fundamental analysis aiding software development

– Help make programs run fast, help you find bugs

• Why in Datalog?
– Declarative recursion

• How does it work?
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Program Analysis

• What is it?
– Fundamental analysis aiding software development

– Help make programs run fast, help you find bugs

• Why in Datalog?
– Declarative recursion

• How does it work?
– Really well!  An order-of-magnitude faster than hand-

tuned, Java tools
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Program Analysis

• What is it?
– Fundamental analysis aiding software development

– Help make programs run fast, help you find bugs

• Why in Datalog?
– Declarative recursion

• How does it work?
– Really well!  An order-of-magnitude faster than hand-

tuned, Java tools

– Datalog optimizations are crucial in achieving 
performance
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WHAT IS PROGRAM ANALYSIS
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Understanding Program Behavior

animal.eat( (Food)  thing);
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Understanding Program Behavior

animal.eat( (Food)  thing);

what is animal?
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Understanding Program Behavior

animal.eat( (Food)  thing);

through what method 
does it eat?

what is animal?
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Understanding Program Behavior

animal.eat( (Food)  thing);

through what method 
does it eat?

what is thing?what is animal?

187

points-to 
analyses

(without actually running the program)
testing



Optimizations

animal.eat( (Food)  thing);

through what method 
does it eat?

what is thing?what is animal?
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Optimizations

animal.eat( (Food)  thing);
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what is thing?what is animal?
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through what method 
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what is thing?what is animal?

190

it’s a Dog

class Dog {
void eat(Food f) { … }

}
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what is thing?what is animal?
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animal.eat( (Food)  thing);

through what method 
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what is thing?what is animal?
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Optimizations

animal.eat( (Food)  thing);

through what method 
does it eat?

what is thing?what is animal?

193

it’s a Dog

class Dog {
void eat(Food f) { … }

}

virtual call resolution

it’s Chocolate



Optimizations

animal.eat( (Food)  thing);

through what method 
does it eat?

what is thing?what is animal?
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it’s a Dog

class Dog {
void eat(Food f) { … }

}

virtual call resolution

it’s Chocolate

type erasure



Bug Finding

animal.eat( (Food)  thing);

through what method 
does it eat?

what is thing?what is animal?
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Bug Finding

animal.eat( (Food)  thing);

through what method 
does it eat?

what is thing?what is animal?
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Bug Finding

animal.eat( (Food)  thing);

through what method 
does it eat?

what is thing?what is animal?
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it’s a Dog

class Dog {
void eat(Food f) { … }

}

it’s Chocolate

Dog + Chocolate = 
BUG

ChokeException never 
caught = BUG



Precise, Fast Program Analysis Is Hard

• necessarily an approximation
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Precise, Fast Program Analysis Is Hard

• necessarily an approximation

– because Alan Turing said so
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Precise, Fast Program Analysis Is Hard

• necessarily an approximation

– because Alan Turing said so

• a lot of possible execution paths to analyze
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Precise, Fast Program Analysis Is Hard

• necessarily an approximation

– because Alan Turing said so

• a lot of possible execution paths to analyze

– 1014 acyclic paths in an average Java program, 
Whaley et al., ‘05
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WHY PROGRAM ANALYSIS IN 
DATALOG?
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Program Analysis: A Complex Domain
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Program Analysis: A Complex Domain
flow-sensitive

field-sensitive

context-sensitive

field-based

object-sensitive

inclusion-based

unification-based

k-cfa

BDDs

heap-sensitive 207
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WHY DATALOG?

224

DECLARATIVE = GOOD



Program Analysis: Domain of Mutual Recursion

var points-to
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Program Analysis: Domain of Mutual Recursion

var points-to
x = y;
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Program Analysis: Domain of Mutual Recursion

var points-to
x = y;
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Program Analysis: Domain of Mutual Recursion

var points-to
x = f();
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Program Analysis: Domain of Mutual Recursion

var points-to
x = f();

call graph
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Program Analysis: Domain of Mutual Recursion

var points-to

call graph

x = y.f();
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Program Analysis: Domain of Mutual Recursion

var points-to

call graph

x = y.f();
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Program Analysis: Domain of Mutual Recursion

var points-to

call graph

x.f = y;

fields points-to
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Program Analysis: Domain of Mutual Recursion

var points-to

call graph

x.f = y;

fields points-to
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Program Analysis: Domain of Mutual Recursion

var points-to

call graph

fields points-to

x = y.f;
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Program Analysis: Domain of Mutual Recursion

var points-to

call graph

fields points-to

x = y.f;
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Program Analysis: Domain of Mutual Recursion

var points-to

call graph

fields points-to

throw e

exceptions
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Program Analysis: Domain of Mutual Recursion

var points-to

call graph

fields points-to

throw e

exceptions

237



Program Analysis: Domain of Mutual Recursion

var points-to

call graph

fields points-to

exceptions

catch (E e)
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Program Analysis: Domain of Mutual Recursion

var points-to

call graph

fields points-to

exceptions

catch (E e)
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var points-to

call graph

fields points-to

exceptions
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Program Analysis: Domain of Mutual Recursion

var points-to

call graph

fields points-to

exceptions

g()
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A Brief History of Datalog

‘95

Control + data flow BDDBDDB

‘05 ‘07 ‘08

.QL 

‘10

Declarative 
networking

Data 
integration

’80s …

LDL, NAIL,  
Coral, ...

‘02

Access control 
(Binder)

Information 
Extraction

SecureBlox

‘77

Workshop on 
Logic and 
Databases 

Evita
Raced

Doop
(pointer-
analysis)

Orchestra CDSS
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A Brief History of Datalog
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PROGRAM ANALYSIS IN DATALOG
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a = new A();
b = new B();
c = new C();
a = b;
b = a;
c = b;

program assignObjectAllocation

a new A()

b new B()

c new C()

assign

What objects can a variable point to?
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a = new A();
b = new B();
c = new C();
a = b;
b = a;
c = b;

program assignObjectAllocation

a new A()

b new B()

c new C()

assign

b a

What objects can a variable point to?
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b c

varPointsTo(Var, Obj) 
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b new B()

c new C()

assign

b a

a b

b c

varPointsTo(Var, Obj) 
<- assignObjectAllocation(Var,Obj).

varPointsTo

a new A()

b new B()

c new C()

266



Defining varPointsTo

a = new A();
b = new B();
c = new C();
a = b;
b = a;
c = b;

program assignObjectAllocation

a new A()

b new B()

c new C()

assign

b a

a b

b c

varPointsTo(Var, Obj) 
<- assignObjectAllocation(Var,Obj).

varPointsTo

a new A()

b new B()

c new C()

267



Defining varPointsTo

a = new A();
b = new B();
c = new C();
a = b;
b = a;
c = b;

program assignObjectAllocation

a new A()

b new B()

c new C()

assign

b a

a b

b c

varPointsTo(Var, Obj) 
<- assignObjectAllocation(Var,Obj).

varPointsTo

a new A()

b new B()

c new C()

268
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c = b;

program assignObjectAllocation

a new A()

b new B()

c new C()
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b a
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varPointsTo(Var, Obj) 
<- assignObjectAllocation(Var,Obj).

varPointsTo(To, Obj) 
<- assign(From, To), varPointsTo(From,Obj).
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b new B()

c new C()
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a new A()

b new B()

c new C()

assign

b a
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b c
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<- assignObjectAllocation(Var,Obj).

varPointsTo(To, Obj) 
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b = a;
c = b;
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b new B()

c new C()

assign

b a
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b c

varPointsTo(Var, Obj) 
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<- assign(From, To), varPointsTo(From,Obj).
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b new B()

c new C()

assign

b a
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b c

varPointsTo(Var, Obj) 
<- assignObjectAllocation(Var,Obj).

varPointsTo(To, Obj) 
<- assign(From, To), varPointsTo(From,Obj).
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varPointsTo(Base, BaseObj),
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varPointsTo(To, Obj) 
<- assign(From, To),

varPointsTo(From,Obj).

fieldPointsTo(BaseObj, Fld, Obj)   
<- storeField(From,Base,Field),

varPointsTo(Base, BaseObj),
varPointsTo(From, Obj). 
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Doop:
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Specification + Implementation

Datalog
Engine

Specifications Implementation

Does It Run 
Fast?!?



Doop vs. Paddle: 
1-call-site-sensitive-heap
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Crucial Optimizations 

• something old

 

• something new(-ish)

 

• something borrowed (from PL)
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Crucial Optimizations 

• something old

– semi-naïve evaluation, folding, index selection

• something new(-ish)

 

• something borrowed (from PL)
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Crucial Optimizations 

• something old

– semi-naïve evaluation, folding, index selection

• something new(-ish)

– magic-sets

• something borrowed (from PL)
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Crucial Optimizations 

• something old

– semi-naïve evaluation, folding, index selection

• something new(-ish)

– magic-sets

• something borrowed (from PL)

– type-based
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Crucial Optimizations 

• something old

– semi-naïve evaluation, folding, index selection

• something new(-ish)

– magic-sets

• something borrowed (from PL)

– type-based
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TYPE-BASED OPTIMIZATIONS
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Types: Sets of Values

327

universe



Types: Sets of Values
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animal

universe



Types: Sets of Values
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animal

universe

food



Types: Sets of Values
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animal

universe

thing

food



Types: Sets of Values
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animal

universe

animal(X)  ->  .

thing

food



Types: Sets of Values
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bird

animal

universe

animal(X)  ->  .

thing

food



Types: Sets of Values
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bird

animal

universe

animal(X)  ->  .

bird(X) -> animal(X) .

thing

food



Types: Sets of Values
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bird dog

animal

universe

animal(X)  ->  .

bird(X) -> animal(X) .

thing

food



Types: Sets of Values
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bird dog

animal

universe

animal(X)  ->  .

bird(X) -> animal(X) .

dog(X) -> animal(X) .

thing

food



Types: Sets of Values
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bird dog

animal

universe

animal(X)  ->  .

bird(X) -> animal(X) .

dog(X) -> animal(X) .

dog(X) -> !bird(X).
bird(X) -> !dog(X).

thing

food



Types: Sets of Values
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bird dog

animal

universe

animal(X)  ->  .

bird(X) -> animal(X) .

dog(X) -> animal(X) .

dog(X) -> !bird(X).
bird(X) -> !dog(X).

thing

food

pet



Types: Sets of Values
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bird dog

animal

universe

animal(X)  ->  .

bird(X) -> animal(X) .

dog(X) -> animal(X) .

dog(X) -> !bird(X).
bird(X) -> !dog(X).

pet(X) -> animal(X).

thing

food

pet



“Virtual Call Resolution”
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query _(D) 
<- dog(D), eat(D, Thing),

food(Thing),
chocolate(Thing).



“Virtual Call Resolution”
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eat(A, Food)
<- dogChews(A,Food)

; birdSwallows(A,Food).

query _(D) 
<- dog(D), eat(D, Thing),

food(Thing),
chocolate(Thing).



“Virtual Call Resolution”
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eat(A, Food)
<- dogChews(A,Food)

; birdSwallows(A,Food).

query _(D) 
<- dog(D), eat(D, Thing),

food(Thing),
chocolate(Thing).



“Virtual Call Resolution”
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eat(A, Food)
<- dogChews(A,Food)

; birdSwallows(A,Food).

query _(D) 
<- dog(D), eat(D, Thing),

food(Thing),
chocolate(Thing).

D :: dog



“Virtual Call Resolution”
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eat(A, Food)
<- dogChews(A,Food)

; birdSwallows(A,Food).

D :: dogquery _(D) 
<- dog(D), eat(D, Thing),

food(Thing),
chocolate(Thing).



“Virtual Call Resolution”
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eat(A, Food)
<- dogChews(A,Food)

; birdSwallows(A,Food).

D :: dogquery _(D) 
<- dog(D), eat(D, Thing),

food(Thing),
chocolate(Thing).

dogChews :: (dog, food)



“Virtual Call Resolution”

345

eat(A, Food)
<- dogChews(A,Food)

; birdSwallows(A,Food).

D :: dogquery _(D) 
<- dog(D), eat(D, Thing),

food(Thing),
chocolate(Thing).

dogChews :: (dog, food)

birdSwallows :: (bird, food)



“Virtual Call Resolution”
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eat(A, Food)
<- dogChews(A,Food)

; birdSwallows(A,Food).

D :: dogquery _(D) 
<- dog(D), eat(D, Thing),

food(Thing),
chocolate(Thing).

dogChews :: (dog, food)

birdSwallows :: (bird, food)



Type Erasure
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eat(A, Food)
<- dogChews(A,Food)

; birdSwallows(A,Food).

query _(D) 
<- dog(D), eat(D, Thing),

food(Thing),
chocolate(Thing).

D :: dog

dogChews :: (dog, food)

birdSwallows :: (bird, food)



Type Erasure
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eat(A, Food)
<- dogChews(A,Food)

; birdSwallows(A,Food).

query _(D) 
<- dog(D), eat(D, Thing),

food(Thing),
chocolate(Thing).

D :: dog

eat :: (dog, food)



Type Erasure

349

eat(A, Food)
<- dogChews(A,Food)

; birdSwallows(A,Food).

query _(D) 
<- dog(D), eat(D, Thing),

food(Thing),
chocolate(Thing).

D :: dog

eat :: (dog, food)



Type Erasure
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eat(A, Food)
<- dogChews(A,Food)

; birdSwallows(A,Food).

query _(D) 
<- dog(D), eat(D, Thing),

food(Thing),
chocolate(Thing).

D :: dogquery _(D) 
<- dog(D), eat(D, Thing),

food(Thing),
chocolate(Thing).

eat :: (dog, food)



Type Erasure
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eat(A, Food)
<- dogChews(A,Food)

; birdSwallows(A,Food).

query _(D) 
<- dog(D), eat(D, Thing),

food(Thing),
chocolate(Thing).

D :: dogquery _(D) 
<- dog(D), eat(D, Thing),

food(Thing),
chocolate(Thing).

Thing :: chocolate

eat :: (dog, food)



Type Erasure

352

eat(A, Food)
<- dogChews(A,Food)

; birdSwallows(A,Food).

query _(D) 
<- dog(D), eat(D, Thing),

food(Thing),
chocolate(Thing).

D :: dogquery _(D) 
<- dog(D), eat(D, Thing),

food(Thing),
chocolate(Thing).

Thing :: chocolate

eat :: (dog, food)



Clean Up
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eat(A, Food)
<- dogChews(A,Food)

; birdSwallows(A,Food).

query _(D) 
<- dog(D), eat(D, Thing),

food(Thing),
chocolate(Thing).

D :: dogquery _(D) 
<- dog(D), eat(D, Thing),

food(Thing),
chocolate(Thing).

Thing :: chocolate

eat :: (dog, food)



Clean Up
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D :: dog

Thing :: chocolate

query _(D) 
<- eat(D,Thing),

chocolate(Thing).

eat(A, Food)
<- dogChews(A,Food). eat :: (dog, food)



References on Datalog and Types

• “Type inference for datalog and its application to 
query optimisation”, de Moor et al., PODS ‘08

• “Type inference for datalog with complex type 
hierarchies”, Schafer and de Moor, POPL ‘10

• “Semantic Query Optimization in the Presence of 
Types”, Meier et al., PODS ‘10

355



Datalog Program Analysis Systems

• BDDBDDB
– Data structure: BDD

• Semmle (.QL)
– Object-oriented syntax
– No update

• Doop
– Points-to analysis for full Java
– Supports for many variants of context and heap 

sensitivity.
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REVIEW
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Program Analysis

• What is it?
– Fundamental analysis aiding software development

– Help make programs run fast, help you find bugs

• Why in Datalog?
– Declarative recursion

• How does it work?
– Really well! order of magnitude faster than hand-

tuned, Java tools

– Datalog optimizations are crucial in achieving 
performance
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Program Analysis
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Program Analysis
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Program Analysis
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Program Analysis
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Program Analysis
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Program Analysis
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• “Evita Raced: Meta-compilation for 
declarative networks”, Condie et al., VLDB ‘08



OPEN CHALLENGES

365



Traditional View
Datalog: Data Querying Language
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Queries



Traditional View
Datalog: Data Querying Language

367

Queries

Middleware

Java C++ Ruby…
Application Logic



Traditional View
Datalog: Data Querying Language

368

Queries

Middleware

Java C++ Ruby…
Application Logic

UI Logic + Rendering

Java JavaScriptOracleForms …



New View
Datalog: General Purpose Language

369

Queries

App. Logic App. Logic

App. Logic

UI Logic UI Logic

UI Rendering



Challenges Raised by Program Analysis

• Datalog Programming in the large
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Challenges Raised by Program Analysis

• Datalog Programming in the large
– Modularization support

– Reuse (generic programming)

– Debugging and Testing
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Challenges Raised by Program Analysis

• Datalog Programming in the large
– Modularization support

– Reuse (generic programming)

– Debugging and Testing

• Expressiveness:
– Recursion through negation, aggregation

– Declarative state
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Challenges Raised by Program Analysis

• Datalog Programming in the large
– Modularization support

– Reuse (generic programming)

– Debugging and Testing

• Expressiveness:
– Recursion through negation, aggregation

– Declarative state

• Optimization, optimization, optimization
– In the presence of recursion!
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Outline of Tutorial

June 14, 2011: The Second Coming of Datalog!

• Refresher: basics of Datalog

• Application #1: Data Integration and Exchange

• Application #2: Program Analysis

• Application #3: Declarative Networking

• Conclusions
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Declarative Networking

• A declarative framework for networks:
– Declarative language: “ask for what you want, not how to 

implement it”

– Declarative specifications of networks, compiled to 
distributed dataflows

– Runtime engine to execute distributed dataflows
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Declarative Networking

• A declarative framework for networks:
– Declarative language: “ask for what you want, not how to 

implement it”

– Declarative specifications of networks, compiled to 
distributed dataflows

– Runtime engine to execute distributed dataflows

• Observation: Recursive queries are a natural fit for 
routing
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A Declarative Network

Traditional Networks Declarative Networks
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A Declarative Network

Traditional Networks Declarative Networks

Network State Distributed database
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A Declarative Network

Distributed recursive 
query

Traditional Networks Declarative Networks

Network State Distributed database

Network protocol Recursive Query Execution
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A Declarative Network

Traditional Networks Declarative Networks

Network State Distributed database

Network protocol Recursive Query Execution

Network messages Distributed Dataflow

DataflowDataflow

messages

Dataflow

Dataflow

Dataflow

Dataflow messages
messages
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Declarative* in Distributed Systems 
Programming

• IP Routing *SIGCOMM’05, SIGCOMM’09 demo+

• Overlay networks *SOSP’05+

• Network Datalog *SIGMOD’06+

• Distributed debugging *Eurosys’06+

• Sensor networks *SenSys’07+

• Network composition *CoNEXT’08+

• Fault tolerant protocols *NSDI’08+

• Secure networks *ICDE’09, NDSS’10, SIGMOD’10]

• Replication *NSDI’09+

• Hybrid wireless routing *ICNP’09+, channel selection *PRESTO’10+

• Formal network verification [HotNets’09, SIGCOMM’11 demo]

• Network provenance [SIGMOD’10, SIGMOD’11 demo]

• Cloud programming [Eurosys ‘10+, Cloud testing (NSDI’11)

• … <More to come>

Databases (5)
Networking (11)

Systems (2)

Security (1)
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Open-source systems

• P2 declarative networking system 
– The “original” system
– Based on modifications to the Click modular router.
– http://p2.cs.berkeley.edu

• RapidNet
– Integrated with network simulator 3 (ns-3), ORBIT wireless testbed, and 

PlanetLab testbed.
– Security and provenance extensions.
– Demonstrations at SIGCOMM’09, SIGCOMM’11, and SIGMOD’11
– http://netdb.cis.upenn.edu/rapidnet

• BOOM – Berkeley Orders of Magnitude
– BLOOM (DSL in Ruby, uses Dedalus, a temporal logic programming 

language as its formal basis).
– http://boom.cs.berkeley.edu/
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R1: reachable(@S,D) <- link(@S,D)

R2: reachable(@S,D) <- link(@S,Z), reachable(@Z,D)

Network Datalog

b dca
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R1: reachable(@S,D) <- link(@S,D)

R2: reachable(@S,D) <- link(@S,Z), reachable(@Z,D)

Network Datalog

b dca

Location Specifier “@S”
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R1: reachable(@S,D) <- link(@S,D)

R2: reachable(@S,D) <- link(@S,Z), reachable(@Z,D)

Network Datalog

Input table:
@S D

@c b

@c d

link
@S D

@b c

@b a

link

@S D

@a b

link

@S D

@d c

link

b dca

Location Specifier “@S”
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R1: reachable(@S,D) <- link(@S,D)

R2: reachable(@S,D) <- link(@S,Z), reachable(@Z,D)

Network Datalog

query _(@M,N) <- reachable(@M,N)

Input table:
@S D

@c b

@c d

link
@S D

@b c

@b a

link

@S D

@a b

link

@S D

@d c

link

b dca

387



All-Pairs Reachability

R1: reachable(@S,D) <- link(@S,D)

R2: reachable(@S,D) <- link(@S,Z), reachable(@Z,D)

Network Datalog

query _(@M,N) <- reachable(@M,N)

@S D

@a b

@a c

@a d

reachable

Output table:

Input table:
@S D

@c b

@c d

link
@S D

@b c

@b a

link

@S D

@a b

link

@S D

@d c

link

b dca

@S D

@b a

@b c

@b d

reachable

@S D

@c a

@c b

@c d

reachable

@S D

@d a

@d b

@d c

reachable
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R1: reachable(@S,D) <- link(@S,D)

R2: reachable(@S,D) <- link(@S,Z), reachable(@Z,D)

Network Datalog

@S D

@a b

@a c

@a d

reachable

Output table:

Input table:

Query: reachable(@a,N)

@S D

@c b

@c d

link
@S D

@b c

@b a

link

@S D

@a b

link

@S D

@d c

link

b dca

query _(@a,N) <- reachable(@a,N)
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Implicit Communication

• A networking language with no explicit communication:

R2: reachable(@S,D) <- link(@S,Z), reachable(@Z,D)

Data placement induces communication
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Path Vector Protocol Example

• Advertisement: entire path to a destination

• Each node receives advertisement, adds itself to path 
and forwards to neighbors

b dca
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Path Vector Protocol Example

• Advertisement: entire path to a destination

• Each node receives advertisement, adds itself to path 
and forwards to neighbors

path=[c,d]

c advertises [c,d]

b dca
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Path Vector Protocol Example

• Advertisement: entire path to a destination

• Each node receives advertisement, adds itself to path 
and forwards to neighbors

path=[c,d]path=[b,c,d]

c advertises [c,d]b advertises [b,c,d]

b dca
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Path Vector Protocol Example

• Advertisement: entire path to a destination

• Each node receives advertisement, adds itself to path 
and forwards to neighbors

path=[c,d]path=[b,c,d]path=[a,b,c,d]

c advertises [c,d]b advertises [b,c,d]

b dca
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Path Vector in Network Datalog

Input: link(@source, destination)

Query output: path(@source, destination, pathVector)

R1: path(@S,D,P) <- link(@S,D), P=(S,D).

R2: link(@Z,S), path(@S,D,P) P=SP2. path(@Z,D,P2),<-

query _(@S,D,P) <- path(@S,D,P) 

Courtesy of Bill Marczak (UC Berkeley)
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Path Vector in Network Datalog

Input: link(@source, destination)

Query output: path(@source, destination, pathVector)

R1: path(@S,D,P) <- link(@S,D), P=(S,D).

R2: link(@Z,S), path(@S,D,P) P=SP2. path(@Z,D,P2),<-

query _(@S,D,P) <- path(@S,D,P) 

Courtesy of Bill Marczak (UC Berkeley)
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Path Vector in Network Datalog

Input: link(@source, destination)

Query output: path(@source, destination, pathVector)

R1: path(@S,D,P) <- link(@S,D), P=(S,D).

R2: link(@Z,S), path(@S,D,P) P=SP2. path(@Z,D,P2),<-

query _(@S,D,P) <- path(@S,D,P) Add S to front of P2

Courtesy of Bill Marczak (UC Berkeley)
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@S D P

Query Execution

@S D P @S D P

Neighbor 
table:

@S D

@c b

@c d

link
@S D

@b c

@b a

link

@S D

@a b

link

@S D

@d c

link

b dca

path path path

Forwarding 
table:

R1: path(@S,D,P) <- link(@S,D), P=(S,D).

R2: path(@S,D,P) <- link(@Z,S), path(@Z,D,P2), P=SP2.

query _(@a,d,P) <- path(@a,d,P)
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@S D P

Query Execution

@S D P @S D P

Neighbor 
table:

@S D

@c b

@c d

link
@S D

@b c

@b a

link

@S D

@a b

link

@S D

@d c

link

b dca

path path path

Forwarding 
table:

R1: path(@S,D,P) <- link(@S,D), P=(S,D).

R2: path(@S,D,P) <- link(@Z,S), path(@Z,D,P2), 
P=SP2.query _(@a,d,P) <- path(@a,d,P)

399



@S D P @S D P

@c d [c,d]

Query Execution

@S D P

Neighbor 
table:

@S D

@c b

@c d

link
@S D

@b c

@b a

link

@S D

@a b

link

@S D

@d c

link

b dca

path path path

Forwarding 
table:

R1: path(@S,D,P) <- link(@S,D), P=(S,D).

R2: path(@S,D,P) <- link(@Z,S), path(@Z,D,P2), 
P=SP2.query _(@a,d,P) <- path(@a,d,P)
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@S D P @S D P @S D P

@c d [c,d]

Query Execution

Forwarding 
table:

b dca

query _(@a,d,P) <- path(@a,d,P)

Neighbor 
table:

@S D

@c b

@c d

link
@S D

@b c

@b a

link

@S D

@a b

link

@S D

@d c

link

path path path

Matching variable Z = “Join”

R1: path(@S,D,P) <- link(@S,D), P=(S,D).

R2: path(@S,D,P) <- link(@Z,S), path(@Z,D,P2), P=SP2. 
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@S D P @S D P @S D P

@c d [c,d]

Query Execution

Forwarding 
table:

b dca

query _(@a,d,P) <- path(@a,d,P)

Neighbor 
table:

@S D

@c b

@c d

link
@S D

@b c

@b a

link

@S D

@a b

link

@S D

@d c

link

path path path

Matching variable Z = “Join”

R1: path(@S,D,P) <- link(@S,D), P=(S,D).

R2: path(@S,D,P) <- link(@Z,S), path(@Z,D,P2), P=SP2. 
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@S D P @S D P

@c d [c,d]

Query Execution

Forwarding 
table:

@S D P

@b d [b,c,d]

b dca

path(@b,d,[b,c,d])

query _(@a,d,P) <- path(@a,d,P)

Neighbor 
table:

@S D

@c b

@c d

link
@S D

@b c

@b a

link

@S D

@a b

link

@S D

@d c

link

path path path

Matching variable Z = “Join”

R1: path(@S,D,P) <- link(@S,D), P=(S,D).

R2: path(@S,D,P) <- link(@Z,S), path(@Z,D,P2), P=SP2. 
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@S D P @S D P

@c d [c,d]

Query Execution

Forwarding 
table:

@S D P

@b d [b,c,d]

b dca

path(@b,d,[b,c,d])

query _(@a,d,P) <- path(@a,d,P)

Neighbor 
table:

@S D

@c b

@c d

link
@S D

@b c

@b a

link

@S D

@a b

link

@S D

@d c

link

path path path

Matching variable Z = “Join”

R1: path(@S,D,P) <- link(@S,D), P=(S,D).

R2: path(@S,D,P) <- link(@Z,S), path(@Z,D,P2), P=SP2. 
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@S D P

@c d [c,d]

Query Execution

Forwarding 
table:

@S D P

@b d [b,c,d]

b dca

path(@b,d,[b,c,d])

query _(@a,d,P) <- path(@a,d,P)

Neighbor 
table:

@S D

@c b

@c d

link
@S D

@b c

@b a

link

@S D

@a b

link

@S D

@d c

link

path path path

@S D P

@a d [a,b,c,d]

path(@a,d,[a,b,c,d])

Matching variable Z = “Join”

R1: path(@S,D,P) <- link(@S,D), P=(S,D).

R2: path(@S,D,P) <- link(@Z,S), path(@Z,D,P2), P=SP2. 
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@S D P

@c d [c,d]

Query Execution

Forwarding 
table:

@S D P

@b d [b,c,d]

b dca

path(@b,d,[b,c,d])

query _(@a,d,P) <- path(@a,d,P)

Neighbor 
table:

@S D

@c b

@c d

link
@S D

@b c

@b a

link

@S D

@a b

link

@S D

@d c

link

path path path

@S D P

@a d [a,b,c,d]

path(@a,d,[a,b,c,d])

Communication patterns are identical to those in 
the actual path vector protocol 

Matching variable Z = “Join”

R1: path(@S,D,P) <- link(@S,D), P=(S,D).

R2: path(@S,D,P) <- link(@Z,S), path(@Z,D,P2), P=SP2. 
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R1: path(@S,D,P,C) <- link(@S,D,C), P=(S,D).

R2: path(@S,D,P,C) <- link(@S,Z,C1), path(@Z,D,P2,C2), C=C1+C2,

 

All-pairs Shortest-path

P=SP2.
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R1: path(@S,D,P,C) <- link(@S,D,C), P=(S,D).

R2: path(@S,D,P,C) <- link(@S,Z,C1), path(@Z,D,P2,C2), C=C1+C2,

query_(@S,D,P,C) <- bestPath(@S,D,P,C)

R3: bestPathCost(@S,D,min<C>) <- path(@S,D,P,C).
R4: bestPath(@S,D,P,C) <- bestPathCost(@S,D,C), path(@S,D,P,C).

All-pairs Shortest-path

P=SP2.
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Distributed Semi-naïve Evaluation

• Semi-naïve evaluation:
– Iterations (rounds) of synchronous computation

– Results from iteration ith used in (i+1)th

Path Table

2

1
1-hop

3

Link Table Network

5
10

0

21
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Distributed Semi-naïve Evaluation

• Semi-naïve evaluation:
– Iterations (rounds) of synchronous computation

– Results from iteration ith used in (i+1)th
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Pipelined Semi-naïve (PSN)

• Fully-asynchronous evaluation:
– Computed tuples in any iteration are pipelined to next iteration

– Natural for distributed dataflows
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Pipelined Semi-naïve (PSN)

• Fully-asynchronous evaluation:
– Computed tuples in any iteration are pipelined to next iteration

– Natural for distributed dataflows
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Dataflow Graph

Nodes in dataflow graph (“elements”):

 Network elements (send/recv, rate limitation, jitter)

 Flow elements (mux, demux, queues)

 Relational operators (selects, projects, joins, aggregates)

Messages Messages

Single Node
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Dataflow Graph

Nodes in dataflow graph (“elements”):

 Network elements (send/recv, rate limitation, jitter)

 Flow elements (mux, demux, queues)
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Rule  Dataflow “Strands”
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R2: path(@S,D,P) <- link(@S,Z), path(@Z,D,P2), 
P=SP2.
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Localization Rewrite

• Rules may have body predicates at different locations:

R2: path(@S,D,P) <- link(@S,Z), path(@Z,D,P2), P=SP2.

Matching variable Z = “Join”
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Localization Rewrite

• Rules may have body predicates at different locations:

R2: path(@S,D,P) <- link(@S,Z), path(@Z,D,P2), P=SP2.
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R2a: linkD(S,@D)  link(@S,D)

Matching variable Z = “Join”

Rewritten rules:
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Localization Rewrite

• Rules may have body predicates at different locations:

R2: path(@S,D,P) <- link(@S,Z), path(@Z,D,P2), P=SP2.
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Matching variable Z = “Join”
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Physical Execution Plan

Strand Elements

R2b: path(@S,D,P) <- linkD(S,@Z), path(@Z,D,P2), P=SP2.
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Physical Execution Plan

Strand Elements

path

R2b: path(@S,D,P) <- linkD(S,@Z), path(@Z,D,P2), P=SP2.
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Physical Execution Plan

Strand Elements

path Join
path.Z = 
linkD.Z

linkD
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Physical Execution Plan

Strand Elements

path Join
path.Z = 
linkD.Z
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R2b: path(@S,D,P) <- linkD(S,@Z), path(@Z,D,P2), P=SP2.
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Physical Execution Plan

Strand Elements

path Join
path.Z = 
linkD.Z

linkD

Project
path(S,D,P)

Send to 
path.S
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Physical Execution Plan

Strand Elements

path Join
path.Z = 
linkD.Z

linkD

Project
path(S,D,P)

Send to 
path.S

R2b: path(@S,D,P) <- linkD(S,@Z), path(@Z,D,P2), P=SP2.

N
etw

o
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linkD Join
linkD.Z = 
path.Z

path

Project
path(S,D,P)

Send to 
path.S

438



Pipelined Evaluation

• Challenges:

– Does PSN produce the correct answer?

– Is PSN bandwidth efficient?

• I.e. does it make the minimum number of inferences?
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Pipelined Evaluation

• Challenges:

– Does PSN produce the correct answer?

– Is PSN bandwidth efficient?

• I.e. does it make the minimum number of inferences?

• Theorems *SIGMOD’06+: 

– RSSN(p) = RSPSN(p), where RS is results set

– No repeated inferences in computing RSPSN(p)

– Require per-tuple timestamps in delta rules and FIFO and 
reliable channels
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Incremental View Maintenance

• Leverages insertion and deletion delta rules for state 
modifications.

• Complications arise from duplicate evaluations. 

• Consider the Reachable query. What if there are many ways to 
route between two nodes a and b, i.e. many possible derivations 
for reachable(a,b)?
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Incremental View Maintenance

• Leverages insertion and deletion delta rules for state 
modifications.

• Complications arise from duplicate evaluations. 

• Consider the Reachable query. What if there are many ways to 
route between two nodes a and b, i.e. many possible derivations 
for reachable(a,b)?

• Mechanisms: still use delta rules, but additionally, apply

– Count algorithm (for non-recursive queries).

– Delete and Rederive (SIGMOD’93). Expensive in distributed settings.

Maintaining Views Incrementally. Gupta, Mumick, 
Ramakrishnan, Subrahmanian. SIGMOD 1993.
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Recent PSN Enhancements

• Provenance-based approach
– Condensed form of provenance piggy-backed with each tuple for 

derivability test.

– Recursive Computation of Regions and Connectivity in Networks. Liu, 
Taylor, Zhou, Ives, and Loo. ICDE 2009.

• Relaxation of FIFO requirements:
– Maintaining Distributed Logic Programs Incrementally.

Vivek Nigam, Limin Jia, Boon Thau Loo and Andre Scedrov.
13th International ACM SIGPLAN Symposium on Principles and 
Practice of Declarative Programming (PPDP), 2011.
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Optimizations

• Traditional:
– Aggregate Selections
– Magic Sets rewrite
– Predicate Reordering
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Optimizations

• Traditional:
– Aggregate Selections
– Magic Sets rewrite
– Predicate Reordering

• New:
– Multi-query optimizations:

• Query Results caching
• Opportunistic message sharing

– Cost-based optimizations
• Network statistics (e.g. density, route request rates, etc.)
• Combining top-down and bottom-up evaluation

PV/DV  DSR
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Suggested Readings

• Networking use cases:
– Declarative Routing: Extensible Routing with Declarative Queries. Loo, 

Hellerstein, Stoica, and Ramakrishnan. SIGCOMM 2005.

– Implementing Declarative Overlays. Loo, Condie, Hellerstein, Maniatis, 
Roscoe, and Stoica. SOSP 2005.

• Distributed recursive query processing:
– *Declarative Networking: Language, Execution and Optimization. Loo, 

Condie, Garofalakis, Gay, Hellerstein, Maniatis, Ramakrishnan, Roscoe, and 
Stoica, SIGMOD 06.

– Recursive Computation of Regions and Connectivity in Networks. Liu, Taylor, 
Zhou, Ives, and Loo. ICDE 2009.
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Challenges and Opportunities

• Declarative networking adoption:
– Leverage well-known open-source software-based projects, e.g. ns-3, 

Quagga, OpenFlow

– Wrappers for legacy code

– Usability studies

– Open-source code release and demonstrations

• Formal network verification:
– Integration of formal tools (e.g. theorem provers, SMT solvers), formal 

network models (e.g. routing algebra)

– Operational semantics of Network Datalog and subsequent extensions

– Other properties: timing, security

• Opportunities for automated program synthesis
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Outline of Tutorial

June 14, 2011: The Second Coming of Datalog!

• Refresher: basics of Datalog

• Application #1: Data Integration and Exchange

• Application #2: Program Analysis

• Application #3: Declarative Networking

• Modern System Implementations

• Open Questions
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• Application #1: Data Integration and Exchange
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What Is A Program?
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What Is A Program?
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Logic + Control + Data Structures
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THE END… OR IS IT THE 
BEGINNING?
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