
Source:

( az

bx1

dy1

cx2

dy2 ey3

)
Answer:

p

dz·x1·y1+z·x2·y2 ez·x2·y3

Figure 1: Simple for Example.

l ∈ L
k ∈ K
p ::= l | $x | () | (p) | p,p | for $x in p return p

| let $x := p return p | if (p=p) then p else p
| element p {p} | name(p) | annot k p | p/s

s ::= ax::nt
ax ::= self | child | descendant
nt ::= l | *

Figure 2: K-UXQuery Syntax.

<az> <bx1> dy1 </>
<cx2> dy2 ey3 </> </>

where we have abbreviated leaves <l></> as l.
We propose a query language for K-UXML called K-UXQuery.

Its syntax, listed in Figure 2, corresponds to a core fragment of
XQuery [11] with one exception: the new construct annot k p
allows queries to modify the annotations on sets. With annot k p
any K-UXML value can be built with the K-UXQuery constructs.

We use the following types for K-UXML and K-UXQuery:

t ::= label | tree | {tree}

where label denotes L, tree denotes the set of all trees and {tree}
denotes the set of all finite K-sets of trees. The typing rules for
selected K-UXQuery operators are given in Figure 3.

At the end of this section we discuss this syntax in more de-
tail, and in §6.3 we present a formal semantics that uses the oper-
ations of the semiring to combine annotations. In the rest of this
section, however, we illustrate the semantics informally on some
simple examples to introduce the basic ideas. We start with very
simple queries demonstrating how the individual operators work,
and build up to a larger example corresponding to a translation of a
relational algebra query.

As a first example, let pi = element ai {()} for i ∈ {1, 2}.
That is, each pi constructs a tree with no children. The query (p1)
produces the singleton K-set in which p1 is annotated with 1 ∈
K and the query annot k1 (p1) produces the singleton K-set in
which p1 is annotated with k1 · 1 = k1. We can also construct
a union of K-sets: let q be annot k1 (p1),annot k2 (p2). The
result computed by q depends on whether a1 and a2 are the same
label or different labels. If a1 = a2 = a, then p1 and p2 are the
same tree and so the query then element b {q} produces the left
tree below. If a1 "= a2, then the same query produces the tree on
the right.

b

ak1+k2

b

ak1
1 ak2

2

Next, let us examine a query that uses iteration:

p = element p { for $t in $S return
for $x in ($t)/* return
($x)/* }

Γ " p1 : {tree} Γ " p2 : {tree}
Γ " p1,p2 : {tree}

Γ " p1 : {tree} Γ, x : tree " p2 : {tree}
Γ " for $x in p1 return p2 : {tree}

Γ " p1 : label Γ " p2 : label Γ " p3 : t Γ " p4 : t

Γ " if (p1=p2) then p3 else p4 : t

Γ " p1 : label G " p2 : {tree}
Γ " element p1 {p2} : tree

Γ " p1 : tree

Γ " name(p1) : label

Γ " p : {tree}
Γ " p/ax::nt : {tree}

Γ " k ∈ K Γ " p : {tree}
Γ " annot k p : {tree}

Figure 3: Selected K-UXQuery Typing Rules.

Source:

(
a

bx1

a

cy3 d

cy1

d

a

cy2 bx2)
Answer:

r

cq1 cy1

d

a

cy2 bx2

where q1 = x1 · y3 + y1 · y2

Figure 4: XPath Example.

If $S is the (source) set on the left side of Figure 1, then the answer
produced by p is the tree on the right in the same figure.6 Oper-
ationally, the query works as follows. First, the outer for-clause
iterates over the set given by $S. As $S is a singleton in our exam-
ple, $t is bound to the tree whose root is labeled a and annotation
in $S is z. Next, the inner for-clause iterates over the set of trees
given by ($t)/*:

( bx1

dy1 ,

cx2

dy2 ey3 )
It binds $x to each of these trees, evaluates the return-clause in
this extended context, and multiplies the resulting set by the anno-
tation on $x. For example, when $x is bound to the b child, the
return-clause produces the singleton set (dy1). Multiplying this
set by the annotation x1 yields (dx1·y1). After combining all the
sets returned by iterations of this inner for-clause, we obtain the
set (dx1·x1+x2·y2, ex2·y3). The final answer for p is obtained by
multiplying this set by z. Note that the annotation on each child in
the answer is the sum, over all paths that lead to that child in $t,
of the product of the annotations from the root of $t to that child,
thus recording how it arises from subtrees of $S.

Next we illustrate the semantics of XPath descendant naviga-
tion (shorthand //). Consider the query

r = element r { $T//c }

which picks out the set of subtrees of elements of $T whose la-
bel is c. A sample source and corresponding answer computed by
r are shown in Figure 4. In §6.3 we define the semantics of the
descendant operator using structural recursion and iteration. It
6Actually this query is equivalent to the shorter “grandchildren”
XPath query $S/*/*; we use the version with a for-clauses to
illustrate the semantics of iteration.


