1. Read the proof of Theorem 4.3.2 on page 67 of the notes on lower bounds. Is it essential to the proof and the method for finding $S^*(I)$, that M is first modified to be \tilde{M}? Explain. A more specific question is: If we don’t change M, how must the statement of the theorem be changed in order to identify $S^*(I)$ in terms of M instead of in terms of \tilde{M}?

2. As commented on the bottom of page 51 of the notes on lower bounds, if sites p and $q > p$ in M are incompatible, then in any ARG for M, p and q must be together on some recombination cycle whose crossover point is in the range $(p, q]$. Lemma 4.1.1 on that page proves that there must be such a crossover point in any ARG for M, and an earlier result showed that p and q must be contained in some common recombination cycle. Your problem is to prove that the common recombination cycle must have crossover point in the range $(p, q]$.

3. Given a set K of k binary strings, each of length n, we want to find each triple of strings S_1, S_2, S_3 such that a single crossover recombination between S_1 and S_2 produces S_3. For any triple, S_1, S_2, S_3, we can easily determine in $O(n)$ time whether S_1 and S_2 can recombine to create S_3. Explain one such way.

Therefore, all desired triples could be found in $O(k^3n)$ time. However, this problem can be solved in $O(nk + k^3)$ time. Explain how (hint: think suffix tree).

Can you also see a way to solve the problem in $O(nk + w)$ time, where w is the number of desired triples? I don’t know the answer to that.

4. Given a set K of k binary strings, each of length n, and a binary string S of length n, we want to create S from K by a series of single crossover recombinations, minimizing the total number of recombination events. A string in K can be used several times in such a scenario. Show how to do this in $O(nk)$ time.

5. Lemma 4.3.2 in the notes (the self-derivability lemma) is correct in the context of checking whether $H(M(S^*(I)))$ should be used for $b(I)$, or if $b(I)$ should be $H(M(S^*(I))) + 1$. That is, it may not be true for arbitrary S, but it is true for $S^*(I)$. So replace S with $S^*(I)$, and explain now why the proof works. The key issue before was the implicit claim in the proof that there are only $D_c(M(S))$ tree nodes, so now the key issue is why there are only
$D_e(M(S^*(I)))$ tree nodes.