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Figure 59 (a) Aset of six circular splits S on X = {a, b,...,h}. (b)An arrangement of the taxa around a
be realized by a straight line through the circle

{a,b}l{c,d,e,f,g,h}
{a,b,c,d,e,f}l{grh}
{a,b,c,f.g, h1d,e}
{a,e,f,hi|ib,c.d,g}

(a) Non-circular splits

representing S.

More formally {9]:

circle such that every split S = A1 BeScan
that separates the two split parts A an
() An outer-labeled planar split netw

Figure 5.10 (a) A set of four non-circular splits S on X =

5.7 Circular splits and planar split networks
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(a) Input matrix (b) Permuted matrix

Figure 5.11 (a) An input matrix M for the Consecutive Ones problem that corresponds to the set of

splits shown in Figure 5.9(a). (b) A solution obtained by permuting the columns of M in
the order suggested by Figure 5.9(b).

S € S has the form

S {Xp, Xpr1s - -+ > Xq} , (5.17)
X - {xpy xp—l—l’ L) xq}

for appropriately chosenl < p<q=<n

We call such an ordering (xi, ..., x,) a circular ordering for S, as it holds that
(x1, ..., %) 1 2 circular ordering for S if and only if (xy, Xn—1,---> x;) and
(X2, X34 - - - » Xn» X1) both are. How to determine whether a set of splits S is cir-
cular? This is equivalent to a well-known problem in computer science:

Problem 5.7.2 (Consecutive Ones problem) Let M be a binary matrix. Does there
exist a permutation of the columns of the matrix M such that in each row, all ones in
the row occur in a single consecutive run?

It is straightforward to translate the problem of determining whether S is circular
into an instance of the Consecutive Ones problem. Simply define a binary matrix
M in which each row r corresponds to some split S € 8 and every column ¢
corresponds to some taxon x e X.Then'set M(r,¢) =1 if and only if S separates
x from the taxon represented by the first column of M.

Exercise 5.7.3 (Circular ordering and Consecutive Ones) Prove the following state-
ment: There exists a circular ordering of X for S if and only if a solution of the
Consecutive Ones problem exists for M. Hint: construct a binary matrix M whose
rows represent splits and whose columns represent taxa (see Figure 5. 11).

The Consecutive Ones problem can be solved in linear time [23]. However, if no
circular ordering exists for a given set of splits S on X, then one might try to
determine a solution that is as good as possible. For our purposes, an appropriate
optimization goal is to find an ordering of X that minimizes the number of runs




