
Computing the LCP array in linear time, given S and the suffix array
POS.

Given a string S, define Suffk as the suffix of string S starting at position
k. Define lcp(S1, S2) as the length of the longest common prefix of strings
S1 and S2. If POS is the suffix array of a string S, and k is an entry at a
position, say i, of POS, then define Pred(k) as the entry in position i − 1 of
POS. That is Pred(k) is the entry in POS just to the left of where k is in array
POS. We want to compute, for each k from 1 to n, lcp(Suffk, SuffPred(k)),
which is defined to be the length of the longest common prefix of Suffk and
SuffPred(k); this is also called depth(k).

We will compute these in order of k from 1 to n. Of course, for each k,
we could compute lcp(Suffk, SuffPred(k)) by doing a direct comparison from
the start of Suffk and SuffPred(k) for as long as they match. We call that
the “direct approach”. But the total time for the direct approach would be
O(n2), not O(n). We will use one simple speedup of the direct approach to
obtain an O(n) time algorithm.

Suppose j = Pred(k) and lcp(Suffk, Suffj) = h > 0.
The first claim is: lcp(Suffk+1, Suffj+1) = h − 1. This follows immedi-

ately from the fact that lcp(Suffk, Suffj) = h > 0. Draw a picture of the
string and positions k, k + 1, j, j + 1.

The second claim is that if h > 0, then lcp(Suffk+1, SuffPred(k+1)) ≥
lcp(Suffk+1, Suffj+1), and hence lcp(Suffk+1, SuffPred(k+1)) ≥ h − 1.

This follows from looking at the locations of the leaves k + 1, j + 1 and
Pred(k+1) are in the suffix tree. By definition and construction of POS, the
LCA of leaves k + 1 and Pred(k + 1) is at or below the LCA of leaves k + 1
and j +1 (draw a picture). In more detail, the paths to leaf k +1 and to leaf
j +1 agree for exactly h− 1 characters, and then they diverge at some node,
say v. Now Pred(k + 1) is the leaf visited in the lexicographic DFS (which
is conceptually one way to obtain or define the suffix array) just before leaf
k + 1 is visited, and if the path to leaf Pred(k + 1) does not extend below v,
that would be impossible. Hence lcp(Suffk+1, SuffPred(k+1)) ≥ h − 1.

The consequence of the second claim is that when we want to compute
lcp(Suffk+1, SuffPred(k+1)) in the direct approach, we don’t have to start
character comparisons at positions k+1 and Pred(k+1) in S, but rather can
skip ahead by h−1 positions and start comparing at positions k+1+h−1 =
k+h and Pred(k+1)+h−1. This is because we already know that if we did
start comparing at positions k + 1 and Pred(k + 1) then those comparisons

1



would match for h − 1 positions, if h > 0.
We claim that with the above little speedup, compared to the O(n2)

direct approach, the number of comparisons in O(n). To see this, consider
how Depth(k) changes as k increases from 1 to n. At the start of each
iteration, the known depth either decreases by one (if Depth(k − 1) > 0), or
it remains the same (if Depth(k − 1) = 0). After the start of any iteration,
the Depth increases by exactly the number of matches made. Since the total
decrease of Depth is at most n (the number of iterations), and Depth can
never be larger than n, there can be at most 2n matches over the execution
of the algorithm. Each iteration ends as soon as there is a mismatch, so
there can be at most n mismatches. So, the total number of comparisons is
bounded by 3n. All other work done in the algorithm is proportional to the
number of compares.

2


