Computing the LCP array in linear time, given S and the suffix array POS.

Given a string S, define $S u f f_{k}$ as the suffix of string S starting at position k. Define $l c p\left(S_{1}, S_{2}\right)$ as the length of the longest common prefix of strings S_{1} and S_{2}. If POS is the suffix array of a string S, and k is an entry at a position, say i, of POS, then define $\operatorname{Pred}(k)$ as the entry in position $i-1$ of POS. That is $\operatorname{Pred}(k)$ is the entry in POS just to the left of where k is in array POS. We want to compute, for each k from 1 to $n, l c p\left(S u f f_{k}, S u f f_{\text {Pred }(k)}\right)$, which is defined to be the length of the longest common prefix of $S u f f_{k}$ and Suff $f_{\operatorname{Pred}(k)}$; this is also called depth (k).

We will compute these in order of k from 1 to n. Of course, for each k, we could compute $l c p\left(S u f f_{k}, S u f f_{\operatorname{Pred}(k)}\right)$ by doing a direct comparison from the start of $S u f f_{k}$ and $S u f f_{\text {Pred }(k)}$ for as long as they match. We call that the "direct approach". But the total time for the direct approach would be $O\left(n^{2}\right)$, not $O(n)$. We will use one simple speedup of the direct approach to obtain an $O(n)$ time algorithm.

Suppose $j=\operatorname{Pred}(k)$ and $\operatorname{lcp}\left(S u f f_{k}, S u f f_{j}\right)=h>0$.
The first claim is: $\operatorname{lcp}\left(S u f f_{k+1}, S u f f_{j+1}\right)=h-1$. This follows immediately from the fact that $l c p\left(S u f f_{k}, S u f f_{j}\right)=h>0$. Draw a picture of the string and positions $k, k+1, j, j+1$.

The second claim is that if $h>0$, then $\operatorname{lcp}\left(S u f f_{k+1}, S u f f_{\text {Pred }(k+1)}\right) \geq$ $\operatorname{lcp}\left(S u f f_{k+1}, S u f f_{j+1}\right)$, and hence $l c p\left(S u f f_{k+1}, S u f f_{\operatorname{Pred}(k+1)}\right) \geq h-1$.

This follows from looking at the locations of the leaves $k+1, j+1$ and $\operatorname{Pred}(k+1)$ are in the suffix tree. By definition and construction of POS, the LCA of leaves $k+1$ and $\operatorname{Pred}(k+1)$ is at or below the LCA of leaves $k+1$ and $j+1$ (draw a picture). In more detail, the paths to leaf $k+1$ and to leaf $j+1$ agree for exactly $h-1$ characters, and then they diverge at some node, say v. Now $\operatorname{Pred}(k+1)$ is the leaf visited in the lexicographic DFS (which is conceptually one way to obtain or define the suffix array) just before leaf $k+1$ is visited, and if the path to leaf $\operatorname{Pred}(k+1)$ does not extend below v, that would be impossible. Hence $l c p\left(S u f f_{k+1}, S u f f_{\operatorname{Pred}(k+1)}\right) \geq h-1$.

The consequence of the second claim is that when we want to compute $\operatorname{lcp}\left(S u f f_{k+1}, S u f f_{\operatorname{Pred}(k+1)}\right)$ in the direct approach, we don't have to start character comparisons at positions $k+1$ and $\operatorname{Pred}(k+1)$ in S, but rather can skip ahead by $h-1$ positions and start comparing at positions $k+1+h-1=$ $k+h$ and $\operatorname{Pred}(k+1)+h-1$. This is because we already know that if we did start comparing at positions $k+1$ and $\operatorname{Pred}(k+1)$ then those comparisons
would match for $h-1$ positions, if $h>0$.
We claim that with the above little speedup, compared to the $O\left(n^{2}\right)$ direct approach, the number of comparisons in $O(n)$. To see this, consider how $\operatorname{Depth}(k)$ changes as k increases from 1 to n. At the start of each iteration, the known depth either decreases by one (if $\operatorname{Depth}(k-1)>0$), or it remains the same (if $\operatorname{Depth}(k-1)=0$). After the start of any iteration, the Depth increases by exactly the number of matches made. Since the total decrease of Depth is at most n (the number of iterations), and Depth can never be larger than n, there can be at most $2 n$ matches over the execution of the algorithm. Each iteration ends as soon as there is a mismatch, so there can be at most n mismatches. So, the total number of comparisons is bounded by $3 n$. All other work done in the algorithm is proportional to the number of compares.

