
1 Ziv-Lempel data compression

Large text or graphics files are often compressed in order to save storage space or
to speed up transmission when the file is shipped. Most operating systems have
compression utilities, and some file transfer programs automatically compress, ship,
and uncompress the file, without user intervention. The field of text compression is
itself the subject of several books (for example see [8]), and will not be handled in
depth here. However, a popular compression method due to Ziv-Lempel [9, 10] has an
efficient implementation using suffix trees [6], providing another illustration of their
utility.

The Ziv-Lempel compression method is widely used (it is the basis for the Unix
utility compress), although there are actually several variants of the method that go
by the same name (see [9, 10]). In this section, we present a basic variant of the
method and an efficient implementation of it using suffix trees.

Definition For any position i in a string S of length m, define the substring Priori

to be the longest prefix of S[i..m] that also occurs as a substring of S[1..i − 1].
For example, if S = abaxcabaxabz then Prior 7 is bax.

Definition For any position i in S, define li as the length of Priori. For li > 0,
define si as the starting position of the leftmost copy of Priori.

In the above example, l7 = 3 and s7 = 2.
Note that when li > 0, the copy of Priori starting at si is totally contained in

S[1..i − 1].
The Ziv-Lempel method uses some of the li and si values to construct a compressed

representation of string S. The basic insight is that if the text S[1..i − 1] has been
represented (perhaps in compressed form) and li is greater than zero, then the next
li characters of S (substring Priori) need not be explicitly described. Rather, that
substring can be described by the pair (si, li), pointing to an earlier occurrence of
the substring. Following this insight, a compression method could process S left to
right, outputting the pair (si, li) in place of the explicit substring S[i..i+ li − 1] when
possible, and outputting the character S(i) when needed. Full details are given in
the algorithm below.

Compression Algorithm One
begin
i := 1
Repeat

compute li and si

if li > 0 then
begin

1



output (si, li)
i := i + li

end
else
begin

output S(i)
i := i + 1

end

Until i > n

end.

For example, S = abacabaxabz can be described as ab(1, 1)c(1, 3)x(1, 2)z. Of
course, in this example the number of symbols used to represent S did not decrease,
but rather increased! That’s typical of small examples. But as the string length
increases, providing more opportunity for repeating substrings, the compression im-
proves. Moreover, the algorithm could choose to output character S(i) explicitly
whenever li is “small” (the actual rule depends on bit level considerations determined
by the size of the alphabet, etc.) For a small example where positive compression
is observed, consider the contrived string S = abababababababababababababababab,
represented as ab(1, 2)(1, 4)(1, 8)(1, 16). That representation uses 24 symbols in place
of the original 32 symbols. If we extend this example to contain k repeated copies
of ab, then the compressed representation contains approximately 5 log2 k symbols, a
dramatic reduction in space.

To decompress a compressed string, process the compressed string left to right, so
that any pair (si, li) in the representation points to a substring that has already been
fully decompressed. That is, assume inductively that the first j terms (single char-
acters or s, l pairs) of the compressed string have been processed, yielding characters
1 through i − 1 of the original string S. The next term in the compressed string is
either character S(i + 1), or it is a pair (si, li) pointing to a substring of S strictly
before i. In either case, the algorithm has the information needed to decompress the
j’th term, and since the first term in the compressed string is the first character of S,
we conclude by induction that the decompression algorithm can obtain the original
string S.

1.1 Implementation using suffix trees

The key implementation question is how to compute li and si each time the algorithm
requests those values for a position i. The algorithm compresses S left to right and
does not request (si, li) for any position i already in the compressed part of S. The
compressed substrings are therefore non-overlapping, and if each requested pair (si, li)

2



can be found in O(li) time, then the entire algorithm would run in O(m) time. Using
a suffix tree for S, the O(li) time bound is easily achieved for any request.

Before beginning the compression, the algorithm first builds a suffix tree T for
S and then numbers each node v with the number cv. This number is the smallest
suffix (position) number of any leaf in v’s subtree, and it gives the leftmost starting
position in S of any copy of the substring that labels the path from r to v. The tree
can be built in O(m) time, and all the node numbers can be obtained in O(m) time
by any standard tree traversal method (or bottom up propagation).

When the algorithm needs to compute (si, li) for some position i, it traverses the
unique path in T that matches a prefix of S[i..m]. The traversal ends at point p (not
necessarily a node) either when no further matches are possible, or when i equals the
string-depth of point p plus the number cv, where v is the first node at or below p.
In either case, the path from the root to p describes the longest prefix of S[i..m] that
also occurs in S[1..i]. So, si equals cv and li equals the string-depth of p. Exploiting
the fact that the alphabet is fixed, the time to find (si, li) is O(li). So the entire
compression algorithm runs in O(m) time.

1.2 A one-pass version

The implementation above assumes that S is known ahead of time and that a suffix
tree for S can be built before compression begins. That is fine in many contexts. But
the method can also be modified to operate on-line as S is being input, one character
at a time. Essentially, the algorithm is implemented so that the compaction of S is
interwoven with the construction of T . The easiest way to see how to do this is with
Ukkonen’s linear-time suffix tree algorithm.

Ukkonen’s algorithm builds implicit suffix trees on-line as characters are added to
the right end of the growing string. Assume that the compaction has been done for
S[1..i−1], and that implicit suffix tree Ii−1 for string S[1..i−1] has been constructed.
At that point, the compaction algorithm needs to know (si, li). It can obtain that pair
in exactly the same way that is done in the above implementation if the cv values
have been written at each node v in Ii−1. But unlike the above implementation
which establishes those cv values in a linear time traversal of T , the algorithm cannot
traverse each of the implicit suffix trees, since that would take more than linear time
overall. Instead, whenever a new internal node v is created in Ukkonen’s algorithm
by splitting an edge (u, w), cv is set to cw, and whenever a new leaf v is created, cv

is just the suffix number associated with leaf v. In this way, only constant time is
needed to update the cv values when a new node is added to the tree. In summary,

Theorem 1.1 Compression algorithm one can be implemented to run in linear time
as a one-pass, on-line algorithm to compress any input string S.

3



1.3 The real Ziv-Lempel

The compression scheme given in Compression algorithm one is not the actual Ziv-
Lempel method, but is close to it and does capture its spirit. The real Ziv-Lempel
method is a one-pass algorithm whose output differs from the output of Compression
algorithm one in that, whenever it outputs a pair (si, li), it then explicitly outputs
S(i+li), the character following the substring. For example, S = abababababababababababababababab
would be compressed to ab(1, 2)a(2, 4)b(1, 10)a(2, 12)b, rather than as ab(1, 2)(1, 4)(1, 8)(1, 16).
The one-pass version of Compression algorithm one can trivially be converted to im-
plement Ziv-Lempel in linear time.

It is not completely clear why the Ziv-Lempel algorithm outputs the extra char-
acter. Certainly for compaction purposes, this character is not needed and seems
extraneous. One suggested reason for outputing an explicit character after each (s, l)
pair is that (si, li)S(i + li) defines the shortest substring starting at position i which
does not appear anywhere earlier in the string, while (si, li) defines the longest sub-
string starting at i which does appear earlier. Historically, it may have been easier
to reason about shortest substrings that do not appear earlier in the string, than to
reason about longest substrings which do appear earlier.

2 APL17: Minimum length encoding of DNA

Recently, several molecular biology and computer science research groups have used
the Ziv-Lempel method to compress DNA strings, not for the purpose of efficient stor-
age, but to compute a measure of the “complexity” or “information content” of the
strings [7, 1, 5, 4]. Without fully defining the central technical terms “complexity”,
“information”, “entropy”, etc., the basic idea is that substrings of greatest biological
significance should be more compressable than substrings that are essentially ran-
dom. One expects that random strings will have too little structure to allow high
compression, since high compression is based on finding repetitive segments in the
string. Therefore, by searching for substrings that are more compressable than ran-
dom strings, one may be able to find strings that have a definite biological function.

Compression has also been used to study the “relatedness”1 of two strings S1 and
S2 of DNA [1, 3]. Essentially, the idea is to build a suffix tree for S1 and then compress
string S2 using only the suffix tree for S1. That compression of S2 takes advantage of
substrings in S2 that appear in S1, but does not take advantage of repeated substrings
in S2 alone. Similarly, S1 can be compressed using only a suffix tree for S2. These
compressions reflect and estimate the “relatedness” of S1 and S2. If the two strings
are highly related, then both computations should significantly compress the string
at hand.

1Other, more common ways to study the relatedness or similarity of strings of two strings are
extensively discussed in Part III.

4



Another biological use for ZL-like algorithms is to estimate the “entropy” of short
strings in order to discriminate between exons and introns in eukaryotic DNA [2].
They report that the average compression of introns does not differ significantly from
the average compression of exons, and hence compression by itself does not distinguish
exons from introns. However, they also report that the following extension of that
approach is effective in distinguishing exons from introns.

Definition For any position i in string S, let ZL(i) denote the length of the
longest substring beginning at i that appears somewhere in the string S[1..i].

Definition Given a DNA string S partitioned into exons and introns, the exon-
average ZL value is the average ZL(i) taken over every position i in the exons of S.
Similarly, the intron-average ZL is the average ZL(i) taken over positions in introns
of S.

It should intuitive at this point that the exon-average ZL value and the intron-
average ZL value can be computed in O(n) time, by using suffix trees to compute
all the ZL(i) values. The technique is similar to the way matching statistics are
computed, but more involved since the substring starting at i must also appear to
the left of position i.

The main empirical result of [2] is that the exon-average ZL value is lower than the
intron-average ZL value by an amount that is statistically significant. That result is
contrary to the expectation stated above that biologically significant substrings (ex-
ons in this case) should be more compressable than more random substrings (which
introns are believed to be). Hence, the full biological significance of string com-
presability is still an open question.

References

[1] L. Allison and C.N. Yee. Minimum message length encoding and the comparison
of macro-molecules. Bull. of Math. Biology, 52:431–453, 1990.

[2] M. Farach, M. Noordewier, S. Savari, L. Shepp, A. Wyner, and J. Ziv. On
the entropy of dna: Algorithms and measurements based on memory and rapid
convergence. Proc. 6’th ACM-SIAM Symp. on Discrete Algs., pages 48–57, 1995.

[3] A. Milosavljevic. Discovering dependencies via algorithmic mutual information:
A case study in dna sequence comparisons. Maching Learning, 21:35–50, 1995.

[4] A. Milosavljevic and J. Jurka. Discovering simple dna sequences by the algorith-
mic significance method. Maching Learning, 9:407–411, 1993.

[5] A. Milosavljevic and J. Jurka. Discovery by minimal length encoding: A case
study in molecular evolution. Maching Learning, 12:69–87, 1993.

[6] M. Rodeh, V.R. Pratt, and S. Even. A linear algorithm for data compression via
string matching. J. ACM, 28:16–24, 1981.

5



[7] P. Salamon and A. Konopka. A maximum entropy principle for distribution of
local complexity in naturally occurring nucleotide sequences. Computers and
Chemistry, 16:117–124, 1992.

[8] J. A. Storer. Data Compression: Methods and theory. Computer Science Press,
1988.

[9] J. Ziv and A. Lempel. A universal algorithm for sequential data compression.
IEEE Trans. on Info. Theory, 23:337–343, 1977.

[10] J. Ziv and A. Lempel. Compression of individual sequences via variable length
coding. IEEE Trans. on Info. Theory, 24:530–536, 1978.

6


