HW 1 Solution to the RNA matching count problem.
Problem 3. Now give recurrences that can be used to correctly count the number of permitted matchings, and give a DP that computes the count in $O\left(n^{3}\right)$ time. This may be a bit challenging.

Solution: $S(i, j)$ is defined as the number of permitted matchings involving the positions from $i$ to $j$ inclusive. It includes the empty matching as one of the matchings. For technical reasons, define $S(j, j)=S(j+1, j)=1$.

Then $S(i, j)=S(i+1, j-1)$
$+\sum_{i<k \leq j: \mathrm{i}}$ and k can match $[S(i+1, k-1) \times S(k+1, j)]$
$+\sum_{i<k<j: j}$ and k can match $[S(i+1, k-1) \times S(k+1, j-1)]$
The first term covers the case that neither $i$ nor $j$ are involved in a match. The first sum counts all of the cases where $i$ is involved in a match to some position between $i+1$ and $j$. Even though $i$ is definately matched to a position $k, j$ may or may not be involved in a match, and the number of those posibilities is $S(k+1, j)$. The second sum counts the cases where $j$ is definately involved in a match and $i$ definately is not involved. We need to verify that all possible matchings are counted, and that none are double counted. The cases are: 1) that neither $i$ nor $j$ are involved in a match - that is covered in the first term, but not in either of the sums, since they count only matchings where $i$ or $j$ or both are in a match.
2) $i$ definately is in a match. Those matchings are counted in the first sum, but not in the second sum or the first term.
3) $i$ and $j$ are both in a match. Those matchings are counted in the first sum, but not in the second sum or the first term.
4) $j$ is in a match, but $i$ is not. Those matchings are counted in the second sum.

