
Part ISuÆx trees and their uses

1

Chapter 1Introdution to suÆx treesA suÆx tree is a data struture that exposes the internal struture of astring in a deep way. SuÆx trees an be used to solve the exat mathingproblem in linear time (ahieving the same worst ase bound that the Knuth-Morris-Pratt and the Boyer-Moore algorithms ahieve), but their real virtueomes from their use in linear time solutions to many string problems moreomplex than exat mathing.The lassi appliation for suÆx trees is the substring problem. One is�rst given a text T of length m. After O(m), or linear, preproessing time,one must be prepared to take in any unknown string S of length n and inO(n) time either �nd an ourrene of S in T or determine that S is notontained in T . That is, the allowed preproessing takes time proportionalto the length of the text, but thereafter, the searh for S must be done intime proportional to the length of S, independent of the length of T . Thesebounds are ahieved with the use of a suÆx tree. The suÆx tree for thetext is built in O(m) time during a preproessing stage; thereafter whenevera string of length O(n) is input, the algorithm searhes for it in O(n) timeusing that suÆx tree.The O(m) preproessing and O(n) searh result for the substring prob-lem is very surprising and extremely useful. In typial appliations, a longsequene of requested strings will be input after the suÆx tree is built, so thelinear time bound for eah searh is important. That bound is not ahievableby the Knuth-Morris-Pratt or Boyer-Moore methods { those methods wouldpreproess eah requested string on input, and then take �(m) (worst ase)time to searh for the string in the text. Sine m may be huge ompared ton, those algorithms would be impratial on any but trivial sized texts.Often the text is a �xed set of strings. so that the substring problemis to determine whether the input string is a substring of any of the �xedstrings. SuÆx trees work niely to eÆiently solve this problem as well.After presenting the algorithms, several appliations and extensions will3

4 CHAPTER 1. INTRODUCTION TO SUFFIX TREESbe disussed in Chapter ??. Then a remarkable result, the onstant time leastommon anestor method, will be presented in Chapter ??. That methodgreatly ampli�es the utility of suÆx trees, as will be illustrated by additionalappliations in Chapter ??.1.1 A short historyThe �rst linear time algorithm for onstruting suÆx trees was given byWeiner [?℄ in 1973, although he alled his tree a position tree. A di�erent,more spae eÆient algorithm to build suÆx trees in linear time was givenby MCreight [?℄ a few years later. Reently, Ukkonen [?℄ developed a on-eptually di�erent linear time algorithm for building suÆx trees whih hasall the advantages of MCreight's algorithm (and when properly viewed anbe seen as a variant of MCreight's algorithm) but allows a muh simplerexplanation.Although more than twenty years have passed sine Weiner's originalresult (whih Knuth is laimed to have alled \the algorithm of 1973" [?℄),suÆx trees have not made it into the mainstream of omputer siene edua-tion, and have generally reeived less attention and use than might have beenexpeted. This is probably beause the two original papers of the 1970's havea reputation for being extremely diÆult to understand. That reputation iswell deserved but unfortunate, beause the algorithms, although non-trivial,are not more ompliated than many widely taught methods. And, whenimplemented well, the algorithms are pratial and allow eÆient solutionsto many omplex string problems. We know of no other single data struture(other than those essentially equivalent to suÆx trees) that allows eÆientsolutions to suh a wide range of omplex string problems.Chapter 2 fully develops the linear time algorithms of Weiner and Ukko-nen, and then briey mentions the high level organization of MCreight'salgorithm and its relationship to Ukkonen's algorithm. Our approah is tointrodue eah algorithm at a high level, giving simple, ineÆient implemen-tations. Those implementations are then inrementally improved to ahievelinear running times. We believe that the expositions and analyses givenhere, partiularly for Weiner's algorithm, are muh simpler and learer thanin the original papers, and hope that these expositions result in a wider useof suÆx trees in pratie.1.2 Basi de�nitionsWhen desribing how to build a suÆx tree for an arbitrary string, we willrefer to the generi string S of length m. We do not use P or T (denotingpattern and text) beause suÆx trees are used in a wide range of appliations

1.2. BASIC DEFINITIONS 5where the input string sometimes plays the role of a pattern, sometimesa text, sometimes both, and sometimes neither. As usual the alphabet isassumed �nite and known. After disussing suÆx tree algorithms for a singlestring S, we will generalize the suÆx tree to handle sets of strings.De�nition A suÆx tree T for an m-harater string S is a rooted di-reted tree with exatly m leaves numbered 1 to m. Eah internal node,other than the root, has at least two hildren and eah edge is labeled with anon-empty substring of S. No two edges out of a node an have edge- labelswhih begin with the same harater. The key feature of the suÆx tree isthat for any leaf i, the onatenation of the edge-labels on the path from theroot to leaf i exatly spells out the suÆx of S that starts at position i. Thatis, it spells out S[i::m℄.For example, the suÆx tree for the string xabxa is shown in Figure 1.1.The path from the root to the leaf numbered 1 spells out the full stringS = xabxa, while the path to the leaf numbered 5 spells out the suÆx awhih starts in position 5 of S.
a

x

x

b

2

1

4

a
c

c

c

6

c

caxb

b

a c

x a

u

w

53Figure 1.1: SuÆx tree for string xabxa. The node labels u and w on thetwo interior nodes will be used later.As stated above, the de�nition of a suÆx tree for S does not guaranteethat a suÆx tree for any string S atually exists. The problem is that ifone suÆx of S mathes a pre�x of another suÆx of S then no suÆx treeobeying the above de�nition is possible, sine the path for the �rst suÆxwould not end at a leaf. For example, if the last harater of xabxa isremoved, reating string xabxa, then suÆx xa is a pre�x of suÆx xabxa, sothe path spelling out xa would not end at a leaf.To avoid this problem, we assume (as was true in Figure 1.1) that thelast harater of S appears nowhere else in S. Then, no suÆx of the resulting

6 CHAPTER 1. INTRODUCTION TO SUFFIX TREESstring an be a pre�x of any other suÆx. To ahieve this in pratie, we anadd a harater to the end of S that is not in the alphabet that string S istaken from. In this book we use $ for the \termination" harater. Whenit is important to emphasize the fat that this termination harater hasbeen added, we will write it expliitly as in S$. But muh of the time, thisreminder will not be neessary and, unless expliitly stated otherwise, everystring S is assumed to be extended with the termination symbol $, even ifthe symbol is not expliitly shown.A suÆx tree is related to the keyword tree (without bakpointers) on-sidered in Setion ??. Given string S, if set P is de�ned to be the m suÆxesof S, then the suÆx tree for S an be obtained from the keyword tree for Pby merging any path of non-branhing nodes into a single edge. The simplealgorithm given in Setion ?? for building keyword trees ould be used toonstrut a suÆx tree for S in O(m2) time, rather than the O(m) bound wewill establish.De�nition The label of a path from the root that ends at a node is theonatenation, in order, of the substrings labeling the edges of that path.The path-label of a node is the label of the path from the root of T to thatnode.De�nition For any node v in a suÆx tree, the string-depth of v is thenumber of haraters in v's label.De�nition A path that ends in the middle of an edge (u; v) splits thelabel on (u; v) at a designated point. De�ne the label of suh a path asthe label of u onatenated with the haraters on edge (u; v) down to thedesignated split point.For example, in Figure 1.1 string xa labels the internal node w (so nodew has path-label xa), string a labels node u, and string xabx labels a paththat ends inside edge (w; 1), i.e. inside the leaf edge touhing leaf 1.1.3 A motivating exampleBefore diving into the details of the methods to onstrut suÆx trees, let'slook at how a suÆx tree for a string is used to solve the exat math problem:given a pattern P of length n and a text T of length m, �nd all ourrenesof P in T in O(n+m) time. We have already seen several solutions to thisproblem. SuÆx trees provide another approah.Build a suÆx tree T for text T in O(m) time, Then math theharaters of P along the unique path in T until either P isexhausted or no more mathes are possible. In the latter ase Pdoes not appear anywhere in T . In the former ase, every leaf in

1.3. A MOTIVATING EXAMPLE 7the subtree below the point of the last math is numbered witha starting loation of P in T , and every starting loation of P inT numbers suh a leaf.The key to understanding the former ase (when all of P mathes a pathin T) is to note that P ours in T starting at position j if and only if Pours as a pre�x of T [j::m℄. But that happens if and only if string P labelsan initial part of the path from the root to leaf j. It is that initial path thatwill be followed by the mathing algorithm.The mathing path is unique beause no two edges out of a ommonnode an have edge-labels beginning with the same harater. And, beausewe have assumed a �nite alphabet, the work at eah node is onstant andso the time to math P to a path is proportional to the length of P .For example, Figure 1.2 shows a fragment of the suÆx tree for stringT = awyawxawxz. Pattern P = aw appears three times in T starting atloations 1, 4 and 7. Pattern P mathes a path down to the point shownby an arrow, and as required, the leaves below that point are numbered 1, 4and 7.If P fully mathes some path in the tree, the algorithm an �nd all thestarting positions of P in T by traversing the subtree below the end of themathing path, olleting position numbers written at the leaves. So allourrenes of P in T an be found in O(n + m) time. This is the sameoverall time bound ahieved by several algorithms onsidered in Part I, butthe distribution of work is di�erent. Those earlier algorithms spend O(n)time for preproessing P , and then O(m) time for the searh. In ontrast,the suÆx tree approah spends O(m) preproessing time, and then O(n+k)searh time, where k is the number of ourrenes of P in T .To ollet the k starting positions of P , traverse the subtree at the end ofthe mathing path using any linear time traversal (depth-�rst say), and notethe leaf numbers enountered. Sine every internal node has at least twohildren, the number of leaves enountered is proportional to the number ofedges traversed, so the time for the traversal is O(k), even though the thetotal string-depth of those O(k) edges may be arbitrarily larger than k.If only a single ourrene of P is required, and the preproessing isextended a bit, then the searh time an be redued from O(n+ k) to O(n)time. The idea is to write at eah node one number (say the smallest) of aleaf in its subtree. This an be ahieved in O(m) time in the preproessingstage by a depth-�rst traversal of T . The details are straightforward andare left to the reader. Then, in the searh stage, the number written on thenode at or below the end of the math gives one starting position of P in T .In Setion ?? we will again onsider the relative advantages of meth-ods that preproess the text versus methods that preproess the pattern(s).Later, in Setion ?? we will also show how to use a suÆx tree to solve the

8 CHAPTER 1. INTRODUCTION TO SUFFIX TREES
a

w

y

.
.

.

x

z

.

.

a

4

1

7

$Figure 1.2: Three ourrenes of aw in awyawxawxz. Their starting posi-tions number the leaves in the subtree of the node with path-label aw.

1.4. A NAIVE ALGORITHM TO BUILD A SUFFIX TREE 9exat mathing problem using O(n) preproessing and O(m) searh time,ahieving the same bounds as in the algorithms presented in Part I.1.4 A naive algorithm to build a suÆx treeTo further solidify the de�nition of a suÆx tree and develop the reader'sintuition, we present a straightforward algorithm to build a suÆx tree forstring S. This naive method �rst enters a single edge for suÆx S[1::m℄$ (theentire string) into the tree, then it suessively enters suÆx S[i::m℄$ into thegrowing tree, for i inreasing from 2 tom. We let Ni denote the intermediatetree that enodes all the suÆxes from 1 to i.In detail, tree N1 onsists of a single edge between the root of the treeand a leaf labeled 1. The edge is labeled with the string S$. Tree Ni+1 isonstruted from Ni as follows: Starting at the root of Ni �nd the longestpath from the root whose label mathes a pre�x of S[i+ 1::m℄$. This pathis found by suessively omparing and mathing haraters in suÆx S[i+1::m℄$ to haraters along a unique path from the root, until no furthermathes are possible. The mathing path is unique beause no two edgesout of a node an have labels whih begin with the same harater. At somepoint, no further mathes are possible beause no suÆx of S$ is a pre�x ofany other suÆx of S$. When that point is reahed, the algorithm is eitherat a node, w say, or it is in the middle of an edge. If it is in the middle ofan edge, (u; v) say, then it breaks edge (u; v) into two edges by inserting anew node, alled w, just after the last harater on the edge that mathed aharater in S[i+ 1::m℄, and just before the �rst harater on the edge thatmismathed. The new edge (u; w) is labeled with the part of the (u; v) labelthat mathed with S[i+ 1::m℄, and the new edge (w; v) is labeled with theremaining part of the (u; v) label. Then (whether a new node w was reated,or already existed at the point where the math ended), the algorithm reatesa new edge (w; i+1) running from w to a new leaf labeled i+1, and it labelsthe new edge with the unmathed part of suÆx S[i+ 1::m℄$.The tree now ontains a unique path from the root to leaf i+1, and thispath is labeled with the string S[1 + 1::m℄$. Note that all edges out of thenew node w have labels whih begin with di�erent �rst haraters, and soit follows indutively that no two edges out of a node have labels with thesame �rst harater.Assuming, as usual, a bounded-size alphabet, the above naive methodtakes O(m2) time to build a suÆx tree for the string S of length m.

10 CHAPTER 1. INTRODUCTION TO SUFFIX TREES

Chapter 2Linear time onstrution ofsuÆx treesWe will show how to onstrut a suÆx tree in linear time by showing a) howto onstrut a suÆx array in linear time, b) how to onstrut the LCP arrayin linear time, and) how to onvert a suÆx array with the LCP array intoa suÆx tree in linear time.

11

