
1 APL13: Suffix Arrays: more space reduction

In Section ??, we saw that when alphabet size is included in the time and space
bounds, the suffix tree for a string of length m either requires Θ(m|Σ|) space or the
minimum of O(m logm) and O(m log |Σ|) time. Similarly, searching for a pattern P of
length n using a suffix tree can be done in O(n) time only if Θ(m|Σ|) space is used for
the tree, or if we assume that up to |Σ| character comparisons cost only constant time.
Otherwise, the search takes the minimum of O(n logm) and O(n log |Σ|) comparisons.
For these reasons, a suffix tree may require too much space to be practical in some
applications. Hence a more space efficient approach is desired that still retains most
of the advantages of searching with a suffix tree.

In the context of the substring problem (see Section ??) where a fixed string T
will be searched many times, the key issues are the time needed for the search, and
the space used by the fixed data structure representing T . The space used during the
preprocessing of T is of less concern, although it should still be “reasonable”.

Manber and Myers [1] proposed a new data structure, called a suffix array, that
is very space efficient and yet can be used to solve the exact matching problem or the
substring problem almost as efficiently as with a suffix tree. Suffix arrays are likely to
be an important contribution to certain string problems in computational molecular
biology, where the alphabet can be large (we will discuss some of the reasons for large
alphabets below). Interestingly, although the more formal notion of a suffix array
and the basic algorithms for building and using it were developed in [1], many of the
ideas were anticipated in the biological literature by Martinez [2].

After defining suffix arrays we show how to convert a suffix tree to a suffix array
in linear time. It is important to be clear on the setting of the problem. String T will
be held fixed for a long time, while P will vary. Therefore the goal is to find a space
efficient representation for T (a suffix array) that will be held fixed and that facilitates
search problems in T . But the amount of space used during the construction of that
representation is not so critical. In the exercises we consider a more space efficient
way to build the representation itself.

Definition: Given an m character string T , a suffix array for T , called Pos, is an
array of the integers in the range 1 to m, specifying the lexicographic order of the m
suffixes of string T .

That is, the suffix starting at position Pos(1) of T is the lexically smallest suffix,
and in general suffix Pos(i) of T is lexically smaller than suffix Pos(i+1).

As usual, we will affix a terminal symbol $ to the end of S, but now interpret
it to be lexically less than any other character in the alphabet. This is in contrast
to its interpretation in the previous section. As an example of a suffix array, if T is
mississippi, then the suffix array Pos is 11, 8, 5, 2, 1, 10, 9, 7, 4, 6, 3. Figure 1 lists the
eleven suffixes in lexicographic order.

Notice that the suffix array holds only integers and hence contains no information
about the alphabet used in string T . Therefore, the space required by suffix arrays

1

11: i
8: ippi
5: issippi
2: ississippi
1: mississippi
10: pi
9: ppi
7: sippi
4: sisippi
6: ssippi
3: ssissippi

Figure 1: The eleven suffixes of mississippi listed in lexicographic order. The starting
positions of those suffixes define the suffix array Pos.

is modest – for a string of length m, the array can be stored in exactly m computer
words, assuming a word size of at least logm bits.

When augmented with an additional 2m values (called Lcp values and defined
later), the suffix array can be used to find all the occurrences in T of a pattern P in
O(n + log2 m) single-character comparison and bookkeeping operations. Moreover,
this bound is independent of the alphabet size. Since for most problems of interest
log2 m is O(n), the substring problem is solved by using suffix arrays as efficiently as
by using suffix trees.

1.1 Suffix tree to suffix array in linear time

We assume that sufficient space is available to build a suffix tree for T (this is done
once during a preprocessing phase), but that the suffix tree cannot be kept intact to
be used in the (many) subsequent searches for patterns in T . Instead we convert the
suffix tree to the more space efficient suffix array. Exercises ??, ?? and ?? develop a
more space efficient (but slower) method for building a suffix array.

A suffix array for T can be obtained from the suffix tree T for T by performing
a “lexical” depth-first traversal of T . Once the suffix array is built, the suffix tree is
discarded.

Definition Define an edge (v, u) to be lexically less than an edge (v, w) if and
only if the first character on the (v, u) edge is lexically less than the first character
on (v, w). (In this application, the end of string character $ is lexically less than any
other character.)

Since no two edges out of v have labels beginning with the same character, there
is a strict lexical ordering of the edges out of v. This ordering implies that the path

2

from the root of T following the lexically smallest edge out of each encountered node
leads to a leaf of T representing the lexically smallest suffix of T . More generally, a
depth-first traversal of T which traverses the edges out of each node v in their lexical
order will encounter the leaves of T in the lexical order of the suffixes they represent.
Suffix array Pos is therefore just the ordered list of suffix numbers encountered at the
leaves of T during the lexical depth- first-search. The suffix tree for T is constructed
in linear time, and the traversal also takes only linear time, so we have the following

Theorem 1.1 The suffix array Pos for a string T of length m can be constructed in
O(m) time.

For example, the suffix tree for T = tartar is shown in Figure 2. The lexical
depth-first traversal visits the nodes in the order 5,2,6,3,4,1, defining the values of
array Pos.

t
a
r

t

a

r

$

a

1

4

$

$

6

3a
r

t
a

r
$

2

5

r t r

$

$

Figure 2: The lexical depth-first traversal of the suffix tree visits the leaves in order
5,2,6,3,4,1.

As an implementation detail, if the branches out of each node of the tree are orga-
nized in a sorted linked list (as discussed in Section ??, page ??), then the overhead
to do a lexical depth-first search is the same as for any depth-first search. Every time
the search must choose an edge out of a node v to traverse, it simply picks the next
edge on v’s linked list.

1.2 How to search for a pattern using a suffix array

The suffix array for string T allows a very simple algorithm to find all occurrences of
any pattern P in T . The key is that if P occurs in T then all the locations of those

3

occurrences will be grouped consecutively in Pos. For example, P = issi occurs in
mississippi starting at locations 2 and 5, which are indeed adjacent in Pos (see Figure
1). So to search for occurrences of P in T simply do binary search over the suffix
array. In more detail, suppose that P is lexically less than the suffix in the middle
position of Pos (i.e., suffix Pos(!m/2")). In that case, the first place in Pos that
contains a position where P occurs in T must be in the first half of Pos. Similarly,
if P is lexically greater than suffix Pos(!m/2"), then the places where P occurs in T
must be in the second half of Pos. Using binary search, one can therefore find the
smallest index i in Pos (if any) such that P exactly matches the first n characters of
suffix Pos(i). Similarly, one can find the largest index i′ with that property. Then
pattern P occurs in T starting at every location given by Pos(i) through Pos(i′).

The lexical comparison of P to any suffix takes time proportional to the length of
the common prefix of those two strings. That prefix has length at most n, hence

Theorem 1.2 By using binary search on array Pos, all the occurrences of P in T
can be found in O(n logm) time.

Of course, the true behavior of the algorithm depends on how many long prefixes of
P occur in T . If very few long prefixes of P occur in T then it will rarely happen that
a specific lexical comparison actually takes Θ(n) time and generally the O(n log m)
bound is quite pessimistic. In “random” strings (even on large alphabets) this method
should run in O(n + log m) expected time. In cases where many long prefixes of P
do occur in T , then the method can be improved with the following two tricks.

1.3 A simple accelerant

As the binary search proceeds, let L and R denote the left and right boundaries of
the “current search interval”. At the start, L equals 1 and R equals m. Then in each
iteration of the binary search, a query is made at location M = !(R + L)/2" of Pos.
The search algorithm keeps track of the longest prefixes of Pos(L) and Pos(R) that
match a prefix of P . Let l and r denote those two prefix lengths respectively, and let
mlr = min(l, r).

The value mlr can be used to accelerate the lexical comparison of P and suffix
Pos(M). Since array Pos gives the lexical ordering of the suffixes of T , if i is any
index between L and R, the first mlr characters of suffix Pos(i) must be the same
as the first mlr characters of suffix Pos(L), and hence of P . Therefore, the lexical
comparison of P and suffix Pos(M) can begin from position mlr+1 of the two strings,
rather than starting from the first position.

Maintaining mlr during the binary search adds little additional overhead to the
algorithm but avoids many redundant comparisons. At the start of the search, when
L = 1 and R = m, explicitly compare P to suffix Pos(1) and suffix Pos(m) to
find l and r and mlr. However, the worst case time for this revised method is still
O(n log m). Myers and Manber report that the use of mlr alone allows the search to

4

run as fast in practice as the O(n+log m) worst case method that we first advertised.
Still, if only because of its elegance, we present the full method that guarantees that
better worst case bound.

1.4 A super-accelerant

Call an examination of a character in P redundant if that character has been examined
before. The goal of the acceleration is to reduce the number of redundant character
examinations to at most one per iteration of the binary search – hence O(log m) in
all. The desired time bound, O(n+log m), follows immediately. The use of mlr alone
does not achieve this goal. Since mlr is the minimum of l and r, whenever l #= r,
all characters in P from mlr + 1 to the maximum of l and r will have already been
examined. So any comparisons of those characters will be redundant. What is needed
is a way to begin comparisons at the maximum of l and r.

Definition Lcp(i,j) is the length of the longest common prefix of the suffixes
specified in positions i and j of Pos. That is, Lcp(i,j) is the length of the longest
prefix common to suffix Pos(i) and suffix Pos(j). The term Lcp stands for longest
common prefix.

For example, when T = mississippi, suffix Pos(3) is issippi, suffix Pos(4) is issis-
sippi, and so Lcp(3,4) is four (see Figure 1).

To speed up the search, the algorithm uses Lcp(L,M) and Lcp(M,R) for each triple
(L, M, R) that arises during the execution of the binary search. For now, we assume
that these values can be obtained in constant time when needed, and show how they
help the search. Later we will show how to compute the particular Lcp values needed
by the binary search during the preprocessing of T .

How to use Lcp values

Simplest case:
In any iteration of the binary search, if l = r, then compare P to suffix Pos(M)

starting from position mlr + 1 = l + 1 = r + 1, as before.

General case:
When l #= r, let us assume without loss of generality that l > r. Then there are

three subcases:

• If Lcp(L,M) > l, then the common prefix of suffix Pos(L) and suffix Pos(M) is
longer than the common prefix of P and Pos(L). Therefore P agrees with suffix
Pos(M) up through character l. In other words, characters l+1 of suffix Pos(L)
and suffix Pos(M) are identical and lexically less than character l + 1 of P (the
last fact follows since P is lexically greater than suffix Pos(L)). Hence all (if
any) starting locations of P in T must occur to the right of position M in Pos.
So in any iteration of the binary search where this case occurs, no examinations

5

of P are needed; L just gets changed to M , and l and r remain unchanged. (See
Figure 3).

• If Lcp(L,M) < l, then the common prefix of suffix Pos(L) and Pos(M) is smaller
than the common prefix of suffix Pos(L) and P . Therefore P agrees with suffix
Pos(M) up through character Lcp(L,M). The Lcp(L,M)+1 characters of P and
suffix Pos(L) are identical and lexically less than character Lcp(L,M)+1 of suffix
Pos(M). Hence all (if any) starting locations of P in T must occur to the left
of position M in Pos. So in any iteration of the binary search where this case
occurs, no examinations of P are needed; r is changed to Lcp(L,M), l remains
unchanged, and R is changed to M .

• If Lcp(L,M) = l, then P agrees with suffix Pos(M) up to character l. The
algorithm then lexically compares P to suffix Pos(M) starting from position
l + 1. In the usual manner, the outcome of that lexical comparison determines
which of L or R change, along with the corresponding change of l or r.

L RM

lcp(L,M)

a

b

c

d

f

e

g

a

e

f

g

b

c

d

a

b

c

x

y

z

d

l
r

a

b

c

d

e

m

n

P

Figure 3: Subcase 1 of the super-accelerant. Pattern P is abcdemn shown vertically
running upwards from the first character. The suffixes Pos(L), Pos(M), Pos(R) are
also shown vertically. In this case, Lcp(L,M) > 0, and l > r. Any starting location of
P in T must occur in Pos to the right of M , since P agrees with suffix Pos(M) only
up to character l.

Theorem 1.3 Using the Lcp values, the search algorithm does at most O(n+ log m)
comparisons, and runs in that time.

Proof First, by simple case analysis it is easy to verify that neither l nor r ever
decreases during the binary search. Also, every iteration of the binary search either
terminates the search, or examines no characters of P , or ends after the first mismatch
occurs in that iteration.

In the two cases (l = r or Lcp(L,M) = l > r) where the algorithm examines a
character during the iteration, the comparisons start with character max(l,r) of P .

6

Suppose there are k characters of P examined in that iteration. Then there are k− 1
matches during the iteration, and at the end of the iteration max(l,r) increases by
k − 1 (either l or r is changed to that value). Hence at the start of any iteration,
character max(l,r) of P may have already been examined, but the next character
in P has not been. That means at most one redundant comparison per iteration is
done. So no more than log2 m redundant comparisons are done overall. There are
at most n non-redundant comparisons of characters of P , giving a total bound of
n + log m comparisons. All the other work in the algorithm can clearly be done in
time proportional to these comparisons. !

1.5 How to obtain the Lcp values

The original method of Manber and Myers has been improved and notes on it will be
distributed.

1.6 Where do large alphabet problems arise?

A large part of the motivation for suffix arrays comes from problems that arise in
using suffix trees when the underlying alphabet is large. So it is natural to ask where
large alphabets occur.

First, there are natural languages, such as Chinese, with large “alphabets” (using
some computer representation of the Chinese pictograms.) But most large alphabets
of interest to us arise because the string contains numbers, each of which is treated
as a character. One simple example is a string that comes from a picture where each
character in the string gives the color or grey level of a pixel.

String and substring matching problems where the alphabet contains numbers,
and where P and T are large, also arise in computational problems in molecular bi-
ology. One example is the map matching problem. A restriction enzyme map for a
single enzyme specifies the locations in a DNA string where copies of a certain sub-
string (a restriction enzyme recognition site) occurs. Each such site may be separated
from the next one by many thousands of bases. Hence, the restriction enzyme map
for that single enzyme is represented as a string consisting of a sequence of integers
specifying the distances between successive enzyme sites. Considered as a string,
each integer is a character of a (huge) underlying alphabet. More generally, a map
may display the sites of many different patterns of interest (whether or not they are
restriction enzyme sites), so the string (map) consists of characters from a finite al-
phabet (representing the known patterns of interest) alternating with integers giving
the distances between such sites. The alphabet is huge because the range of integers
is huge, and since distances are often known with high precision, rounding is not used.
Moreover, the variety of known patterns of interest is itself large (see [3] for a library
of several hundred known, significant patterns).

It often happens that a DNA substring is obtained and studied without knowing

7

where that DNA is located in the genome or whether that substring has been previ-
ously researched. If both the new and the previously studied DNA are fully sequenced
and put in a database, then the issue of previous work or locations would be solved
by exact string matching. But most DNA substrings that are studied are not fully
sequenced – maps are easier and cheaper to obtain than sequences. So the following
matching problem on maps arises and translates to an matching problem on strings
with large alphabets:

Given an established (restriction enzyme) map for a large DNA string, and
a map from a smaller string, determine if the smaller string is a substring
of the larger one.

Since each map is represented as an alternating string of characters and integers,
the underlying alphabet is huge. This provides one motivation for using suffix arrays
for matching or substring searching in place of suffix trees. Of course, the problems
become more difficult in the presence of errors, when the integers in the strings may
not be exact, or when sites are missing or spuriously added. That problem, called
map alignment, is discussed in Section ??.

References

[1] U. Manber and G. Myers. Suffix arrays: a new method for on-line search. SIAM
J. on Computing, pages 935–948, 1993.

[2] H. Martinez. An efficient method for finding repeats in molecular sequences. Nucl.
Acids Res., 11:4626–4634, 1983.

[3] E. Trifonov and V. Brendel. Gnomic: A dictionary of genetic codes. VCH Press,
Deerfield, Florida, 1986.

8

