
Chapter 1Exat Mathing:Fundamental Preproessingand First Algorithms1.1 The Naive methodAlmost all disussions of exat mathing begin with the Naive Method, andwe follow this tradition. The naive method aligns the left end of P with theleft end of T , then ompares the haraters of P and T left to right untileither two unequal haraters are found or until P is exhausted, in whihase an ourrene of P is reported. In either ase, P is then shifted oneplae to the right, and the omparisons are restarted from the left end of P .This proess repeats until the right end of P shifts past the right end of T .Using n to denote the length of P and m to denote the length of T ,the worst ase number of omparisons made by this method is �(nm). Inpartiular, if both P and T onsist of the same repeated harater, thenthere is an ourrene of P at eah of the �rst m � n + 1 positions of Tand the method performs exatly n(m�n+1) omparisons. For example ifP = aaa and T = aaaaaaaaaa then n = 3; m = 10 and 24 omparisons aremade.The naive method is ertainly simple to understand and program, butits worst ase running time of �(nm) may be unsatisfatory and an beimproved. Even the pratial running time of the naive method may betoo slow for larger texts and patterns. Early on, there were several relatedideas to improve the naive method, both in pratie and in worst ase. Theresult is that the O(n�m) worst-ase bound an be redued to O(n+m).Changing \�" to \+" in the bound is extremely signi�ant (try n = 1000and m = 10; 000; 000, whih are realisti numbers in some appliations.1

2CHAPTER 1. EXACTMATCHING: FUNDAMENTAL PREPROCESSINGAND FIRST ALGORITHMS1.2 The preproessing approahMany string mathing and analysis algorithms are able to eÆiently skipomparisons by �rst spending \modest" time learning about the internalstruture of either the pattern P or the text T . During that time, the otherstring may not even be known to the algorithm. This part of the overallalgorithm is alled the preproessing stage. Preproessing is followed by asearh stage, where the information found during the preproessing stageis used to redue the work done while searhing for ourrenes of P inT . In the above example, the smarter method was assumed to know thatharater a did not our again until position 5, and the even smarter methodwas assumed to know that the pattern abx was repeated again starting atposition 5. This assumed knowledge is obtained in the preproessing stage.For the exat mathing problem, all of the algorithms mentioned in theprevious setion preproess pattern P . (The opposite approah of prepro-essing text T is used in other algorithms, suh as those based on suÆxtrees. Those methods will be explained later in the book.) These prepro-essing methods, as originally developed, are \similar in spirit" but oftenquite di�erent in detail and oneptual diÆulty. In this book we take adi�erent approah and do not initially explain the originally developed pre-proessing methods. Rather, we highlight the similarity of the preproessingtasks needed for several di�erent mathing algorithms, by �rst de�ning afundamental preproessing of P that is independent of any partiular math-ing algorithm. Then we show how eah spei� mathing algorithm uses theinformation omputed by the fundamental preproessing of P . The resultis a simpler more uniform exposition of the preproessing needed by severallassial mathing methods, and a simple linear time algorithm for exatmathing based only on this preproessing (disussed in Setion 1.5). Thisapproah to linear-time pattern mathing was developed in [?℄.1.3 Fundamental preproessing of the patternFundamental preproessing will be desribed for a general string denotedS. In spei� appliations of fundamental preproessing, S will often be thepattern P , but here we use S instead of P beause fundamental preproessingwill also be applied to strings other than P .The following de�nition gives the key values omputed during the fun-damental preproessing of a string.De�nition Given a string S and a position i > 1, let Zi(S) be the lengthof the longest substring of S that starts at i and mathes a pre�x of S.In other words, Zi(S) is the length of the longest pre�x of S[i::s℄ whih

1.3. FUNDAMENTAL PREPROCESSING OF THE PATTERN 3mathes a pre�x of S. For example, when S = aabaabxaaz thenZ5(S) = 3 (aab:::aabx:::);Z6(S) = 1 (aa:::ab:::);Z7(S) = Z8(S) = 0;Z9(S) = 2 (aab:::aaz):When S is lear by ontext, we will use Zi in plae of Zi(S).To introdue the next onept, onsider the boxes drawn in Figure 1.1.Eah box starts at some position j > 1 suh that Zj is greater than zero.The length of the box starting at j is meant to represent Zj . Therefore, eahbox in the �gure represents a maximal-length substring of S that mathes apre�x of S, and that doesn't start at position one. Eah suh box is alleda Z-box. More formally,De�nition For any position i > 1 where Zi is greater than zero, theZ-box at i is de�ned as the interval starting at i and ending at positioni+ Zi � 1.De�nition For every i > 1, ri is the rightmost endpoint of the Z-boxesthat begin at or before position i. Another way to state this is: ri is thelargest value of j + Zj � 1 over all 1 < j � i suh that Zj > 0. (See Figure1.1.We use the term li for the value of j spei�ed in the above de�nition.That is, li is the position of left end of Z-box that ends at ri. In ase there ismore than one Z-box ending at ri, then li an be hosen to be the left endof any of those Z-boxes. As an example, suppose S = aabaabaxaabaaby.Then Z10 = 7, r15 = 16 and l15 = 10.
S

Zl i

l
i

r
i

i

ααFigure 1.1: Eah solid box represents a substring of S that mathes a pre�xof S and that starts between positions 2 and i. Eah box is alled a Z-box.We use ri to denote the rightmost end of any Z-box that begins at or to theleft of position i, and � to denote the substring in the Z-box ending at ri.Then li denotes the left end of �. The opy of � that ours as a pre�x ofS is also shown in the �gure.The linear time omputation of Z values from S is the fundamentalpreproessing task that we will use in all the lassial linear-time mathing

4CHAPTER 1. EXACTMATCHING: FUNDAMENTAL PREPROCESSINGAND FIRST ALGORITHMSalgorithms that preproess P . But before detailing those uses, we show howto do the fundamental preproessing in linear time.1.4 Fundamental preproessing in linear timeThe task of this setion is to show how to ompute all the Zi values for S inlinear time, i.e., in O(jSj) time. A diret approah based on the de�nitionwould take �(jSj2) time. The method we will present was developed in [?℄for a di�erent purpose.The preproessing algorithm omputes Zi; ri and li for eah suessiveposition i, starting from i = 2. All the Z values omputed will be kept bythe algorithm, but in any iteration i, the algorithm only needs the rj and ljvalues for j = i�1. No earlier r or l values are needed. Hene the algorithmonly uses a single variable, r, to refer to the most reently omputed rjvalue; similarly it only uses a single variable l. Therefore, in eah iterationi, if the algorithm disovers a new Z-box (starting at i), variable r will beinremented to end of that Z-box, whih is the rightmost position of anyZ-box disovered so far.To begin, the algorithm �nds Z2 by expliitly omparing, left to right,the haraters of S[2::jSj℄ and S[1::jSj℄ until a mismath is found. Z2 is thelength of the mathing string. If Z2 > 0, then r = r2 is set to Z2 + 1 andl = l2 is set to 2. Otherwise r and l are set to zero. Now assume indutivelythat the algorithm has orretly omputed Zi for i up to k � 1 > 1, andassume that the algorithm knows the urrent r = rk�1 and l = lk�1. Thealgorithm next omputes Zk, r = rk, and l = lk.The main idea is to use the already omputed Z values to aeleratethe omputation of Zk . In fat, in some ases, Zk an be dedued from theprevious Z values without doing any additional harater omparisons. Asa onrete example, suppose k = 121, all the values Z2 through Z120 havealready been omputed, and r120 = 130 and l120 = 100. That means thatthere is a substring of length 31 that starts at position 100 and that mathesa pre�x of S (of length 31). It follows that the substring of length 10 startingat position 121 must math the substring of length 10 starting at position22 of S, and so Z22 may be very helpful in omputing Z121. As one ase, ifZ22 is three, say, then a little reasoning shows that Z121 must also be three.So in this illustration, Z121 an be dedued without any additional harateromparisons. This ase, along with the others, will be formalized and provenorret below.

1.4. FUNDAMENTAL PREPROCESSING IN LINEAR TIME 5The Z AlgorithmGiven Zi for all 1 < i � k � 1 and the urrent values of r and l, Zk and theupdated r and l are omputed as follows:Begin1. If k > r, then �nd Zk by expliitly omparing the haraters startingat position k to the haraters starting at position 1 of S, until a mismathis found. The length of the math is Zk. If Zk > 0, then set r to k+ Zk � 1and set l to k.2. If k � r, then position k is ontained in a Z-box, hene S(k) isontained substring S[l::r℄ (all it �) suh that l > 1 and � mathes a pre�xof S. Therefore harater S(k) also appears in position k0 = k � l + 1 of S.By the same reasoning, substring S[k::r℄ (all it �) must math substringS[k0::Zl℄. It follows that the substring beginning at position k must math apre�x of S of length at least the minimum of Zk0 and j�j (whih is r�k+1).See Figure 1.2.We onsider two subases based on what that minimum is.2a. If Zk0 < j�j then Zk = Zk0 and r; l remain unhanged (see Figure1.3).2b. If Zk0 � j�j then the entire substring S[k::r℄ must be a pre�x of Sand Zk � j�j = r � k + 1. However, Zk might be stritly larger than j�j,so ompare the haraters starting at position r + 1 of S to the haratersstarting a position j�j+ 1 of S until a mismath ours. Say the mismathours at harater q � r + 1. Then Zk is set to q � k, r is set to q � 1 andl is set to k (see Figure 1.4).End
k

α
α

k’ Z

S ββ

l
l rFigure 1.2: String S[k::r℄ is labeled � and also ours starting at position k0of S.Theorem 1.4.1 Using Algorithm Z, value Zk is orretly omputed andvariables r and l are orretly updated.Proof In ase 1, Zk is set orretly sine it is omputed by expliitomparisons. Also (sine k > r in ase 1), before Zk is omputed, no Z- boxhas been found that starts between positions 2 and k�1 and that ends at orafter position k. Therefore when Zk > 0 in ase 1, the algorithm does �nd a

6CHAPTER 1. EXACTMATCHING: FUNDAMENTAL PREPROCESSINGAND FIRST ALGORITHMS
k

α
αS

k’Z

γγ γ

k

k’

β

+Zk

β

Z+

1-

k’

k’

- 1

l rFigure 1.3: Case 2a. The longest string starting at k0 that mathes a pre�xof S is shorter than j�j. In this ase, Zk = Zk0 :
k

α
S

α

+ Zk’

β β ?

k’
- 1

k’

β
l rFigure 1.4: Case 2b. The longest string starting at k0 that mathes a pre�xof S is at least j�j.new Z-box ending at or after k, and it is orret to hange r to k + Zk � 1.Hene the algorithm works orretly in ase 1.In ase 2a, the substring beginning at position k an math a pre�x ofS only for length Zk0 < j�j. If not, then the next harater to the right,harater k + Zk0 , must math harater 1 + Zk0 . But harater k + Zk0mathes harater k0 + Zk0 (sine Zk0 < j�j) so harater k0 + Zk0 mustmath harater 1+Zk0 . But that would be a ontradition to the de�nitionof Zk0 , for it would establish a substring longer than Zk0 that starts at k0 andmathes a pre�x of S. Hene Zk = Zk0 in this ase. Further, k+Zk� 1 < r,so r and l remain orretly unhanged.In ase 2b, � must be a pre�x of S (as argued in the body of the algo-rithm) and sine any extension of this math is expliitly veri�ed by om-paring haraters beyond r to haraters beyond the pre�x �, the full extentof the math is orretly omputed. Hene Zk is orretly obtained in thisase. Furthermore, sine k + Zk � 1 � r, the algorithm orretly hanges rand l. 2Corollary 1.4.1 Repeating algorithm Z for eah position i > 2 orretlyyields all the Zi values.Theorem 1.4.2 All the Zi(S) values are omputed by the algorithm in O(jSj)time.Proof The time is proportional to the number of iterations, jSj, plus thenumber of harater omparisons. Eah omparison results in either a math

1.5. THE SIMPLEST LINEAR-TIME EXACTMATCHINGALGORITHM7or a mismath, so we next bound the number of mathes and mismathesthat an our.Eah iteration that does any harater omparisons at all ends the �rsttime it �nds a mismath, hene there are at most jSj mismathes during theentire algorithm. To bound the number of mathes, note �rst that rk � rk�1for every iteration k. Now, let k be an iteration where q > 0 mathes our.Then rk is set to rk�1 + q at least. Finally, rk � jSj, so the total number ofmathes that our during any exeution of the algorithm is at most jSj. 21.5 The simplest linear-time exat mathing algo-rithmBefore disussing the more omplex (lassial) exat mathing methods, weshow that fundamental preproessing alone provides a simple linear time ex-at mathing algorithm. This is the simplest linear-time mathing algorithmwe know of.Let S = P$T be the string onsisting of P followed by the symbol \$"followed by T , where \$" is a harater appearing in neither P nor T . Reallthat P has length n and T has length m, and n � m. So, S = P$T haslength n+m+ 1 = O(m). Compute Zi(S) for i from 1 to n+m+ 1. Sine\$" does not appear in P or T , Zi � n for every i. Any value of i > n + 1suh that Zi(S) = n identi�es an ourrene of P in T starting at positioni�(n+1) of T . Conversely, if P ours in T starting at position j of T , thenZ(n+1)+j must be equal to n. Sine all the Zi(S) values an be omputed inO(n+m) = O(m) time, this approah identi�es all the ourrenes of P inT in O(m) time.The method an be implemented to use only O(n) spae (in additionto the spae needed for pattern and text) independent of the size of thealphabet. Sine Zi � n for all i, position k0 (determined in step 2) willalways fall inside P . Therefore there is no need to reord the Z values forharaters in T . Instead, we only need to reord the Z values for the nharaters in P , and also maintain the urrent l and r. Those values aresuÆient to ompute (but not store) the Z value of eah harater in T andhene to identify and output any position i where Zi = n.There is another harateristi of this method that is worth introduinghere. The method is onsidered an alphabet independent linear time method.That is, we never had to assume that the alphabet size was �nite, or thatwe knew the alphabet ahead of time { a harater omparison only deter-mines whether the two haraters math or mismath, it needs no furtherinformation about the alphabet. We will see that this harateristi is alsotrue of the Knuth-Morris-Pratt and Boyer-Moore algorithms, but not of theAho-Corasik algorithm or methods based on suÆx trees.

