is constructed when $F < M - |V|^{1/2}$. This layered network is identical with the first for \tilde{G}, with zero flow everywhere. Also, by Lemma 6.5, G is of type 2. Thus, by Lemma 6.4, the length l of the layered network is at most $(|V| - 2) / \tilde{M} + 1$. Now, $\tilde{M} = M - F > M - (M - |V|^{1/2}) = |V|^{1/2}$.

Thus,

$$l \leq \frac{|V| - 2}{|V|^{1/2}} + 1 = O(|V|^{1/2}).$$

Therefore, the number of phases up to this one is at most $O(|V|^{1/2})$. Since the number of phases to completion is at most $|V|^{1/2}$ more, the total number of phases is at most $O(|V|^{1/2})$.

Q.E.D.

6.2 VERTEX CONNECTIVITY OF GRAPHS

Intuitively, the connectivity of a graph is the minimum number of elements whose removal from the graph disconnect it to more than one component. There are four cases. We may discuss undirected graphs or digraphs; we may discuss the elimination of edges or vertices. We shall start with the problem of determining the vertex-connectivity of an undirected graph. The other cases, which are simpler, will be discussed in the next section.

Let $G(V, E)$ be a finite undirected graph, with no self-loops and no parallel edges. A set of vertices, S, is called an (a, b) vertex separator if $\{a, b\} \subset V - S$ and every path connecting a and b passes through at least one vertex of S. Clearly, if a and b are connected by an edge, no (a, b) vertex separator exists. Let $a \not\sim b$ mean that there is no such edge. In this case, let $N(a, b)$ be the least cardinality of an (a, b) vertex separator. Also, let $p(a, b)$ be the maximum number of pairwise vertex disjoint paths connecting a and b in G; clearly, all these paths share the two end-vertices, but no other vertex appears on more than one of them.

Theorem 6.4: If $a \not\sim b$ then $N(a, b) = p(a, b)$.

This is one of the variations of Menger's theorem [2]. It is not only reminiscent of the max-cut min-flow theorem, but can be proved by it. Dantzig and Fulkerson [3] pointed out how this can be done, and we shall follow their approach.

Proof: Construct a digraph $\tilde{G}(\tilde{V}, \tilde{E})$ as follows. For every $v \in V$ put two vertices v' and v'' in \tilde{V} with an edge $v' \not\sim v''$. For every edge $u \sim v$ in G, put
two edges $u'' \rightarrow v'$ and $v'' \rightarrow u'$ in \bar{G}. Define now a network, with digraph \bar{G}, source a'', sink b', unit capacities for all the edges of the e' type (let us call them internal edges), and infinite capacity for all the edges of the e' and e'' type (called external edges). For example, in Fig. 6.1(b) the network for G, as shown in Fig. 6.1(a), is demonstrated.

We now claim that $p(a, b)$ is equal to the total maximum flow F (from a'' to b') in the corresponding network. First, assume we have $p(a, b)$ vertex

![Diagram](a)

![Diagram](b)

Figure 6.1