

1545-5971 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2017.2768536, IEEE
Transactions on Dependable and Secure Computing

5

Fig. 3: Visual demonstration of sensing usages. The
report includes the total usages for all applications, and
the individual usage of each application.

by the system call. According to the parsing result, the
system calls are delivered to Usage Generator for further
analysis.

Usage Generator leverages a set of audit policies to
generate the sensing usage reports. Each entry to report
sensing usage is defined as a vector, which includes the
accessing time, data size and sensor accessor. The informa-
tion delivered from Parameter Parser is sporadic. So we need
to gather the information to create sensing usage reports,
which are stored in a local database. These reports are
available to be accessed by Sensing Monitor.

3.4 Sensing Monitor
Sensing Monitor is an application that allows a user to ana-
lyze the sensing usages generated by Hook Module. Sensing
Monitor can visualize the reports of the sensing usages
by applications or by sensors in a comprehensive manner.
Figure 3 shows one user interface of Sensing Monitor. A
graph of location sensors usage is presented to the user,
where the red curve denotes the overall usage over the time.
The usage of each application is represented by curves in
different colors.

4 SENDROID: IMPLEMENTATION

We leverage the graphic sensors as an example to illustrate
the implementation of senDroid:

Figure 4 shows the interposition of senDroid in the data
flow of the camera’s APIs, e.g., startPreview. The ap-
plication process does not actually communicate with the
camera device. Instead, the interaction with the camera
device is implemented in the mediaserver process. The appli-
cation process informs the mediaserver process of its request
through Binder. When receiving the request sent by the
application process, the camera service and camera driver
pass the request to the camera device. The camera service
also returns the execution results via Binder.

The interaction between the mediaserver process and
Binder indicates that the request is sent by which application
and is delivered to which service. The interaction between
the mediaserver process and the camera device indicates

mediaserver process

Application process

Camera

Application

Camera Service

/dev/binder

Camera

Driver

Camera

startPreview

start_preview

ioctl(,VIDIOC_XXX,)

Binder Driver

ioctl(,BINDER_WRITE_READ,)

Binder Driver

ioctl(,BINDER_WRITE_READ,)

onTransact(START_PREVIEW,)

Sensing Monitor

Hook

Module

Fig. 4: Interposition of senDroid in the data flow of
startPreview. The shadowed blocks are designed in
senDroid.

what and how many data the application obtains.These two
interactions are the choke points of the data flow and are
where senDroid interposes.

4.1 Interception between Service and Binder
We leverage senDroid to intercept interactions
between the service and Binder. Concretely, the Hook
Module hooks the ioctl called by Binder. Then,
the Parameter Parser parses the read_buffer in
the structure binder_write_read, and finds out
all the BR_TRANSACTION commands(illustrated in
Section 2.2.1). Furthermore, we extract the receiver
and the requester from the first entry of buffer in the
structure binder_transaction_data and the field
sender_euid, respectively. Finally, we identify the
operation according to the field code.

4.2 Interception between Service and Devices
4.2.1 Graphic Sensors
senDroid intercepts the ioctl calls with the commands
VIDIOC_STREAMON and VIDIOC_STREAMOFF to learn
when an application opens and closes cameras. When
starting preview, the camera driver calls ioctl with the
command VIDIOC_DQBUF, and the corresponding data
buffer is a structure named v4l2_buffer. This structure
contains variables, from which we can infer the size of
a graphic frame. At the driver layer, the preview, the
photo, and the video are all graphic frames so that we
cannot pick out a photo or a piece of video from the
stream of graphic frames. Fortunately, we can demarcate
the stream according to the Binder requests sent by the
applications. The ioctl calls called by Binder sending
request to ICamera with the code TAKE_PICTURE in-
dicates that an application is taking photos. Similarly,
Binder request sent to ICamera or IMediaRecorder
with the code START/STOP_RECORDING extracts a piece
of video from the stream of frames. It is noteworthy
that an application can take pictures or record videos
using PreviewCallback instead of takePicture or
MediaRecorder. senDroid monitors Binder request sent to
ICamera with the code SET_PREVIEW_CALLBACK_FLAG
to learn whether a PreviewCallback is registered before
the preview starts or during previewing.

1545-5971 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2017.2768536, IEEE
Transactions on Dependable and Secure Computing

6

4.2.2 Audio Sensors

senDroid intercepts the ioctl calls invoked
by the audio driver with the command
SNDRV_PCM_IOCTL_READI_FRAMES. We calculate
the size of audio record from the corresponding
data buffer named snd_xferi. ALSA only has
the command SNDRV_PCM_IOCTL_START, with no
command SNDRV_PCM_IOCTL_STOP. So we obtain
the start and end time of the audio record by the
approach described in Section 4.1. Concretely, we
capture the ioctl calls called by Binder where the
service name is android.media.IAudioRecord or
android.media.IMediaRecorder with the code either
START or STOP. We use the time of these calls as the start
and end time of the audio record.

Considering that the MediaRecorder can be uti-
lized to record audio as well as video, and before us-
ing MediaRecorder to record audio or video, appli-
cations are required to invoke setAudioSource and
setVideoSource respectively, we distinguish these two
usages by monitoring the invocation of setAudioSource
and setVideoSource. The corresponding codes in the
ioctl called by Binder are SET_AUDIO_SOURCE and
SET_VIDEO_SOURCE respectively.

4.2.3 Location Sensors

When the location information is sent via the message queue
mechanism, which is illustrated in Section 2.2.2, senDroid
hooks the message receiving calls called by the GPS driver
and parses the message received from the GPS device. We
determine the operation specified by the message according
to the message id. senDroid intercepts the messages with the
message id REPORT_POSITION, which indicates that the
received data are geographic positions reported to a location
requester. We intercept the ioctl calls where the service
name is android.location.ILocationManager to de-
termine the start and end time of the tracking of GPS
according to the code REQUEST_LOCATION_UPDATES and
REMOVE_UPDATES.

4.2.4 Standard Sensors

As mentioned in Section 2.2.2, standard sensors have
no open source driver on Nexus 4. So we can-
not learn how standard sensors driver communicates
with corresponding device. However, senDroid can in-
tercept the ioctl calls called by Binder that send-
ing request to SensorEventConnection with the code
ENABLE_DISABLE. This Binder request carries two parame-
ters: a standard sensor handle and a Boolean (TRUE presents
enabling and FALSE presents disenabling). So we can know
which standard sensor is activated and when it is acti-
vated or deactivated. Moreover, Binder request with code
SET_EVENT_RATE contains a parameter that indicates the
access frequency of standard sensors application. Because
the data size of one standard sensor record is negligible.
So although we cannot obtain the exact data of standard
sensors, we argue that activated time interval and access
frequency of standard sensors are crucial and sufficient to
audit the sensing based on the standard sensors.

4.3 Prototype Setup

We use the Nexus 4 with Android 4.2.2 as our experi-
ment platform. When we set up our prototype, we need
to root the device firstly, and then leverage the existing
DLL injection approach 2 to inject into the target processes
(mediaserver, system server and application processes that ac-
cess sensors3), load the function substitution codes into the
target processes and execute the function substitution. Then,
we leverage the implementation in [27] to accomplish the
function substitution. The function substitution code goes
through the memory map of the target processes and load
each ELF file to substitute the functions we concerned, e.g.,
ioctl for our own functions. After deploying senDroid, all
four categories of sensors, including camera, microphone,
GPS, and standard sensors, will be audited. The sensing
usage is logged in XML format for subsequent analysis in
Sensing Monitor.

5 SENDROID: EVALUATION

In order to evaluate the accuracy and overhead of senDroid,
we set up the application dataset which consists of 540 ap-
plications downloaded from the top free chart of Google Play
Store in April, 2016. We only keep the applications which re-
quire access to sensors monitored by senDroid while remove
the others. Of the 540 applications, 429 applications require
access to one or more of the four categories of sensors.
Further, We ignore applications which have internal failure
or whose sensor related functionalities cannot be reached
due to geological or system version restriction. For camera,
microphone and GPS, we determine whether an application
requires access to these three categories of sensor infor-
mation based on the permissions it requests. For standard
sensors, we determine that an application requires access to
standard sensor data if it declares <uses-feature> tag for
android.hardware.sensor.*.

We randomly select three ones for each type of sensors
under the auditing of senDroid. All evaluation experiments
are run on a Nexus 4 with 2GB RAM running Android
4.2.2. 4

5.1 Deviation of Data Reported by senDroid
5.1.1 Experiment Results
Table 3 shows the experiment results for applications which
use camera to take pictures or take videos, use microphone
to record audio, use GPS or network to request locations,
and access standard sensors. We record the start time and
end time of each Action on each App. We repeat the above
operation three times. Then, in Table 3, Mean start time
|∆| refers to the average value of start time difference
between the value recorded by a tester and by senDroid. And
Mean stop time |∆| refers to the average value of end time

2. https://github.com/shutup/libinject2
3. The camera service and audio service are launched in mediaserver,

the location service and sensors service are launched in system server.
We cannot guarantee whether an application directly accesses sensors
via JNI, so we inject into every application process.

4. Although the new version of Android has many new features,
the technical details of sensor access are almost same. We, thus, use
this version as our experiment platform. Furthermore, these popular
applications may run this version of Android, and be empirical studied
according to sensor usages in the next section.

1545-5971 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2017.2768536, IEEE
Transactions on Dependable and Secure Computing

7

TABLE 3: Comparison between the time of accessing sen-
sors observed manually and the time of accessing sensors
recorded by senDroid

.

Action App Mean start
time |∆| (s)

Mean stop
time |∆| (s)

Taking
pictures

PicsArt 0.00 -
Poshmark 2.00 -
Perfect365 0.66 -

Taking
video

Zoosk 1.00 0.50
Tango 0.50 0.50
ooVoo 1.00 0.50

Recording
audio

Tom Loves Angela 0.00 0.00
Tango 0.00 0.00
Talking Tom 0.00 0.00

Requesting
location

CM Security 0.50 0.00
Expedia 0.00 0.00
360 Security 0.00 0.00

Reading
standard
sensors

Temple Run 2 4.00 2.50
Bowling Kings 2.00 2.50
Traffic Racer 3.00 3.00

difference between the value recorded by a tester and by
senDroid.

Applications listed in Table 3 respectively provide users
with the functions of taking pictures, taking videos, record-
ing audios, requesting locations, and reading standard sen-
sors. We record the time when we trigger the actions and the
time when senDroid detects that the application executes the
actions. Considering the time from UI operations to the time
the application actually executes the actions, the deviation
is acceptable. As is shown Table 3, senDroid’s deviation for
detecting access to standard sensor data is larger than that of
other sensors. Because games will usually play animations
before and after the game starts or ends, so it is more
difficult to infer the time when applications start or stop
requesting standard sensor data.

5.1.2 Accuracy of Recorded Video & Audio Length

We developed an evaluation application to measure
the length of videos and audios which senDroid
records, and compared them with the actual lengths.
We leveraged the setMaxDuration API of the class
android.media.MediaRecorder to set the length of the
videos and audios. After the recording reaches the length we
set, MediaRecord will stop the recording. Here, we deploy
senDroid on three different Nexus 4 in order to explore
whether the deviation differs on different devices. For each
value of length, we ran the test for five times and calculated
the average length recorded by senDroid.

As is shown in Table 4, the lengths which senDroid record
are about 1.3 seconds and 0.2 second more than the actual
lengths of the video and audio, respectively, and the devia-
tion is almost the same on different devices. Moreover, as the
lengths of the video and audio increase, the deviation almost
remains unchanged. According to our investigation, the
deviation may be caused by the overhead of inter-process
communication or the preprocessing and postprocessing of
the record. Since the deviation is consistent for the same
type of sensor across different devices and different lengths
of recordings, we ignore the deviation in the length of
recordings reported by senDroid.

TABLE 4: Comparison between the actual length of videos
and audios and the length which senDroid records.

Lengths(s)

Actual Average recorded by senDroid(Differences)

Device 1 Device 2 Device 3

10.00 11.30(1.30) 11.31(1.31) 11.34(1.34)
video 30.00 31.32(1.32) 31.28(1.28) 31.31(1.31)

60.00 61.31(1.31) 61.38(1.38) 61.33(1.33)
120.00 121.24(1.24) 121.31(1.31) 121.31(1.31)

10.00 10.21(0.21) 10.21(0.21) 10.20(0.20)
audio 30.00 30.19(0.19) 30.19(0.19) 30.21(0.21)

60.00 60.21(0.21) 60.25(0.25) 60.23(0.23)
120.00 120.23(0.23) 120.24(0.24) 120.23(0.23)

5.2 Audit of Taking Pictures from Preview Frames

As we described in Section 4.2.1, an application can pro-
cess the provided preview data in the onPreviewFrame
callback. This means that applications can take pictures
or record videos without calling the takePicture or
MediaRecorder API by starting camera preview and tak-
ing screenshot programmatically.

To better evaluate the effectiveness of senDroid with this
case, we evaluated senDroid with an application called Spy
Camera HD5. According to Spy Camera HD’s description
on Google Play Store, it allows users to secretly take pho-
tos without any shutter sound and camera preview on
the phone screen. Users can instruct Spy Camera HD to
take pictures by shaking the phone, whistling or setting
a timer. After reverse-engineering Spy Camera HD, we
confirm that Spy Camera HD actually takes pictures in the
onPreviewFrame callback it registers by processing the
content data of the preview frame which is provided as an
argument when the onPreviewFrame callback is called.
Even on devices which shutter sound is enabled forcibly,
capturing the provided preview data in onPreviewFrame
instead of calling takePicture directly will not trigger any
shutter sound. In this way, Spy Camera HD can take pictures
without people’s awareness.

We used Spy Camera HD to take several pictures by
shaking the phone and matched the time when the pictures
were taken based on the pictures’ timestamps with the
duration of camera preview and the duration of application
requesting standard sensor data which senDroid records.
The result is shown in Figure 5. The first row shows the
time which Spy Camera HD took a picture based on the
timestamp of the saved picture file. For example, the first
picture was taken at the 18th second. The second and
third rows show the time duration when Spy Camera HD
started the camera preview and requested standard sensor
data respectively. For example, the first duration of camera
preview started at the 9th second and ended at the 30th
second, which also matches the first duration of Spy Camera
HD’s requesting for standard sensor data. During the test,
we took five pictures, and there were three durations when
Spy Camera HD started camera preview and requested
standard sensor data at the same time. We can conclude
from Figure 5 that all pictures taken with Spy Camera HD

5. https://play.google.com/store/apps/details?id=com.usefullapps.
spycamera

1545-5971 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2017.2768536, IEEE
Transactions on Dependable and Secure Computing

8

Fig. 5: The timestamps of pictures taken by Spy Camera HD
and the time durations of Spy Camera HD’s usage of sensors
detected by senDroid

fall in the camera preview duration and standard sensor
data request duration which senDroid records.

Since senDroid will not only record applications’ calling
the takePictureAPI, it will also detect applications which
override the onPreviewFrame callback and record the
duration which applications start the camera preview, these
two tricky methods of taking pictures can be detected by
senDroid. With senDroid, users can have a complete overview
of how applications access the camera and be aware of
potential suspicious usage of camera and other sensors.

5.3 Audit of Dynamically Loaded APK
In February 2016, Alipay, backed by Chinese e-commerce
giant Alibaba, was accused of taking pictures and recording
audios secretly with its Android client [2]. As discovered
by Twitter user typcn [28], the code logic of Alipay for
Android’s suspicious behavior consists of a file with the
extension .so downloaded from a remote server via the
Internet. The .so file is actually an executable APK file,
which will be run as a plugin inside Alipay for Android.
Since the .so file will be checked for updates periodically,
the suspicious behavior was quickly removed quietly after
the incident became popular on the Internet without users’
updating the host Alipay for Android application itself.

We built an application which emulates the dynamic
APK loading feature of Alipay for Android based on the
open source project ACDD [29]. This application can down-
load APK files as plugins from a remote server, extract
DEX files from the APK files and finally run the code
logic in the APK files using DexClassLoader, which is
similar to the claimed mechanism leveraged by Alipay for
Android. Plugins are compiled with a patched aapt tool, so
the resource IDs of plugins will not conflict with those of the
host application, and the host application can distinguish
resources from different plugins by reading the first byte of
the resource ID. The mInstrumentation variable of the
android.app.ActivityThread class is also hooked, so
that when components such as activities and services in the
plugins are launched, corresponding resources are loaded.
The host application which we built is a dummy application
which only loads and runs APK files from a remote server,
while a dynamically loaded APK file contains the logic of
taking pictures and recording audios. As we tested, senDroid
successfully detected the usage of camera and microphone
in the dynamically loaded APK.

5.4 Performance Evaluation
5.4.1 Performance of Sensor Operations
To measure the performance overhead of calling the sensor
APIs incurred by senDroid, we built a test application to

take pictures, record videos, and record audios successively,
and compared the time which it takes to perform the same
operations with senDroid installed or not. For the operation
of taking pictures, we takes 10 pictures successively. The
measurement includes the time from executing the first
taking picture action by calling the takePicure API to the
calling of the onPictureTaken callback for the last picture.
Note that, to better reflect the actual overhead of calling the
camera APIs incurred by senDroid, all pictures are dropped
without saving to the disk, so the time of disk I/O is
eliminated. For the operation of recording video and audio,
the customized application records 10 pieces of video/audio
with a length of 10 seconds. This measurement includes
the time from preparing recording the first video/audio to
the calling of the onInfo callback with a “what” code of
MEDIA_RECORDER_INFO_MAX_DURATION_REACHED
for the last video/audio. Due to restriction of the
MediaRecorder API, video and audio cannot be recorded
by MediaRecorder without saving, so the results include
the time of disk I/O. Since both the takePicure API
and the MediaRecorder API are IPC-based APIs which
requires senDroid to extract information from the ioctl
system call, the evaluation results can truly reflect senDroid’s
performance overhead in the worst cases.

All tests were performed on a same newly flashed Nexus
4 with 2GB RAM running Android 4.2.2 after a reboot in the
same environment. Table 5 shows the results. The numbers
in parentheses indicate the expected range of values with
a confidence interval of 95%. senDroid adds approximately
8.05%, 0.04% and 0.04% overhead to taking pictures, record-
ing videos and recording audios, respectively. The addi-
tional overhead can be attributed to storing the sensor usage
to database. Thus, we can conclude that the performance
overhead imposed by senDroid is negligible.

TABLE 5: Macrobenchmark Results
Action w/o senDroid (s) w/ senDroid (s) Overhead

Picture 2.38(0.09) 2.58(0.14) 8.05%
Video 115.80(0.46) 115.84(0.14) 0.04%
Audio 103.32(0.07) 103.37(0.08) 0.04%

5.4.2 AnTuTu Benchmark
Further, we want to know whether senDroid will also in-
troduce negligible overhead to the overall system or not.
We use a popular Android benchmarking tool: AnTuTu [30]
to compare the system performance with and without
senDroid. The average benchmark results of five tests for a
Nexus 4 running Android 4.2.2 with and without senDroid
respectively are shown in Table 6. Similarly, the number in
parentheses indicating the expected range of values with a
confidence interval of 95%. We can conclude from Table 6
that senDroid also imposes negligible overhead with only
1.28% on the overall system performance.

6 SENDROID: EMPIRICAL STUDY

6.1 Experiment Setup
In this section, we conducted an extensive, empirical study
on the sensor usage in real applications from popular mar-
kets. Before the study, we collected applications from Wan-
doujia, 360 and Google Play Store in September and October

1545-5971 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2017.2768536, IEEE
Transactions on Dependable and Secure Computing

9

TABLE 6: AnTuTu Benchmark Results (Larger numbers in
cells imply more efficient performance for test cases.)

Without
senDroid

With
senDroid

Overhead

RAM 5058.4(218.9) 5040.6(167.7) 0.35%
CPU mathematics 3600.4(58.8) 3558(25.4) 1.18%
CPU common use 3692.8(305.0) 3442.6(116.3) 6.78%
CPU multi-core perfor-
mance

2511.8(67.7) 2526(30.5) -0.57%

UX data security 1270.4(72.5) 1291.4(8.3) -1.65%
UX data processing 549.6(12.2) 541.4(7.9) 1.49%
UX strategy games 754.8(20.1) 750.4(11.5) 0.58%
UX image process 259.4(5.7) 260.2(3.9) -0.31%
UX I/O performance 1487(19.5) 1527.6(33.6) -2.73%

Overall 19184.6(212.985) 18938.2(200.3) 1.28%

TABLE 7: Application Category Composition of Wandoujia
Dataset. There are 503 applications from 19 categories.
Category Number Category Number

COMMUNICATION 30 UTILITY 29
EDUCATION 30 GAMES 28
BEAUTY&BABY 30 TRANSPORTATION 28
MUSIC 30 TOOLS 28
LIFESTYLE 30 SHOPPING 27
PHOTOGRAPHY 30 PRODUCTIVITY 25
NEWS&MAGAZINES 30 VIDEO 23
PERSONALIZATION 29 SOCIAL 15
FINANCE 29 HEALTH&FITNESS 3
TRAVEL 29

2016, among which Wandoujia and 360 are predominant
application markets in China. We mainly picked top free
applications of each category, and the category distributions
of applications in each application market are shown in
Table 7, Table 8 and Table 9 respectively. Note that, there
exists an applications’ overlap between these three markets,
which means that a same application can be tested twice
or three times. Especially, there are 119 applications being
tested both in Wandoujia and 360. Basically, we focus our
study on the accesses to sensors of the applications in the
following two phases:

• Launch Phase: Once an application is launched, it may
detect the availability of the concerned sensors or
gather sensors data for initialization and cause a large
amount of accesses to sensors. We install and start all
applications in dataset on a smartphone one by one.
Here, we define a Launch Phase interval for 2 minutes
just after each application started, and senDroid will
audit the accesses to sensors during this interval and
write the report in a log file.

• Silent Phase: We also evaluate the accesses to sensors
when an application is running in the background. The
study for Silent Phase can help to reveal the applications’
malicious use or abuse of sensors in current prevailing
application markets. In this phase, any sensor usage
recorded by senDroid will be regarded as suspicious
usage. Due to the memory limitation of the tested An-
droid device, we run 16 applications in the background
at the same time for about 24 hours, thus to make sure
that we would get accurate and enough information
about sensor usages.

Note that, although it should be more efficient to run

TABLE 8: Application Category Composition of 360 Dataset.
There are 361 applications from 14 categories.

Category Number Category Number

FINANCE 30 COMMUNICATION&SOCIAL 28
PHOTOGRAPHY 30 WALLPAPER 27
LIFESTYLE 30 BUSSINESS 27
GAMES 30 EDUCATION 22
NEWS&MAGAZINES 29 SYSTEM SECURITY 21
SHOPPING 29 HEALTH&MEDICAL 15
MAPS&TRAVEL 29 MUSIC&VIDEO 14

TABLE 9: Application Category Composition of Google Play
Store Dataset. There are 625 applications from 25 categories.

Category Number Category Number

TOOLS 35 NEWS AND MAGAZINES 25
COMICS 34 PRODUCTIVITY 23
PERSONALIZATION 34 HEALTH AND FITNESS 22
BOOKS AND REFERENCE 32 MEDICAL 22
WEATHER 31 GAMES 20
BUSINESS 29 LIFESTYLE 20
SOCIAL 29 TRAVEL AND LOCAL 20
COMMUNICATION 27 ENTERTAINMENT 19
EDUCATION 27 LIBRARIES AND DEMO 19
PHOTOGRAPHY 27 MEDIA AND VIDEO 19
MUSIC AND AUDIO 26 SPORTS 17
SHOPPING 26 FINANCE 16
TRANSPORTATION 26

evaluation tests on emulators, audio sensors and standard
sensors are unfortunately disabled and cannot be emulated
on emulators [31], [32]. Thus we must conduct the experi-
ments manually on real devices.

6.2 Experiment Results of Empirical Study

We studied applications downloaded from Wandoujia, 360
and Google Play Store respectively from October, 2016 to Jan-
uary, 2017. Because the numbers of applications in different
markets and categories are not uniform, to eliminate the
interference, we calculate the percentage of applications in
the results.

6.2.1 Launch Phase

For Wandoujia, we got 2,209 records of sensor accesses,
among which 396 records were generated during Launch
Phase. The accesses mainly concentrate on GPS and stan-
dard sensors: There are 117 (23.3%) applications under 18
different categories out of 503 valid samples access location
sensors in Launch Phase. The accesses to location sensors are
very widespread. As is shown in Figure 6, the applications
under the categories of Lifestyle, Travel and Shopping are most
active to access location sensors in this phase. Besides,about
12.3% of applications try to access various kinds of standard
sensors during the Launch Phase. Differing from location
sensors, standard sensors are typically accessed by appli-
cations of Health&Sports, Games and Videos. We also have
an inspection into the accessing frequency of each kind of
standard sensors during this phase. Among all the six types
of standard sensors, accelerometer is the most popular one
and the number of its related records is far more than the
records of other types of standard sensors. Note that, few
application try to fetch the graphic sensors data or audio
sensors data in this phase, and the only four applications

1545-5971 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2017.2768536, IEEE
Transactions on Dependable and Secure Computing

10

0

0.5

1

1.5

2

2.5

C
O

M
M

U
N

IC
A

T
IO

N

E
D

U
C

A
T

IO
N

B
E

A
U

T
Y

&
B

A
B

Y

PE
R

S
O

N
A

L
IZ

A
T

IO
N

L
IF

E
S

T
Y

L
E

PH
O

T
O

G
R

A
PH

Y

N
E

W
S&

M
A

G
A

Z
I…

M
U

S
IC

F
IN

A
N

C
E

T
R

A
V

E
L

U
T

IL
IT

Y

T
R

A
N

SP
O

R
T

A
T

IO
N

T
O

O
L

S

G
A

M
E

S

S
H

O
P

PI
N

G

PR
O

D
U

C
T

IV
IT

Y

V
ID

E
O

SO
C

IA
L

H
E

A
L

T
H

&
F

IT
N

E
S

S

The Average Access Times of Standard
Sensors

The Average Access Times of Location
Sensors

Fig. 6: The average access times during Launch Phase to each
type of sensors in each category of Wandoujia market.

0

0.2

0.4

0.6

0.8

1

1.2

H
E

A
L

T
H

&
M

E
D

IC
A

L

S
H

O
P

PI
N

G

L
IF

E
S

T
Y

L
E

G
A

M
E

S

P
H

O
T

O
G

R
A

P
H

Y

F
IN

A
N

C
E

N
E

W
S

&
M

A
G

A
Z

IN
E

S

M
A

P
S&

T
R

A
V

E
L

E
D

U
C

A
T

IO
N

C
O

M
M

U
N

IC
A

T
IO

N
…

M
U

S
IC

&
V

ID
E

O

S
Y

S
T

E
M

 S
E

C
U

R
IT

Y

W
A

L
L

PA
PE

R

B
U

S
S

IN
E

SS

The Average Access Times of Standard Sensors

The Average Access Times of Location Sensors

Fig. 7: The average access times during Launch Phase to each
type of sensors in each category of 360 market.

are basically scan tools or shooting tools, which depends
their main functions on the use of camera preview.

For 360, there are 103 and 42 applications accessed
location sensors and standard sensors respectively, while
only one accessed graphic sensors and one accessed audio
sensors. Comparing with Wandoujia, the ratio of location
sensors usages in 360 is a little bit higher while the ratio
of standard sensor usage is lower. We calculate the average
access times to each type of sensors in each category re-
spectively as shown in Figure 7. Similarly, the applications
in Shopping and Lifestyle categories still behave actively not
only on accessing location sensors but also on accessing
standard sensors. Over 55% of the applications in Shopping
category triggered location sensors access, and 51.7% of
Shopping applications accessed standard sensors.

At last, for the applications in Google Play Store, the
overall accessing during Launch Phase is relatively less
than applications from the above two markets. During
the Launch Phase, only 79 out of 625 applications accessed
location sensors, and 56 applications were recorded with
standard sensors’ accessing history. Similarly, the accesses
to accelerometer are the most frequently among all types
of standard sensors, while there are no access record for
light and proximity sensor data. An overall distribution
of categories that accessed sensors during Launch Phase is
shown in Figure 8.

0

0.2

0.4

0.6

0.8

1

1.2

L
IF

E
S

T
Y

L
E

S
O

C
IA

L
T

R
A

V
E

L
_A

N
D

_L
O

C
A

L
G

A
M

E
S

W
E

A
T

H
E

R
E

N
T

E
R

T
A

IN
M

E
N

T
F

IN
A

N
C

E
C

O
M

M
U

N
IC

A
T

IO
N

S
PO

R
T

S
T

R
A

N
S

P
O

R
T

A
T

IO
N

M
E

D
IA

_A
N

D
_V

ID
E

O
P

E
R

SO
N

A
L

IZ
A

T
IO

N
S

H
O

P
PI

N
G

E
D

U
C

A
T

IO
N

P
H

O
T

O
G

R
A

P
H

Y
T

O
O

L
S

N
E

W
S

_A
N

D
_M

A
G

A
Z

I…
H

E
A

L
T

H
_A

N
D

_F
IT

N
E

…
P

R
O

D
U

C
T

IV
IT

Y
B

U
S

IN
E

S
S

M
E

D
IC

A
L

C
O

M
IC

S
M

U
S

IC
_A

N
D

_A
U

D
IO

B
O

O
K

S_
A

N
D

_R
E

FE
R

…
L

IB
R

A
R

IE
S

_A
N

D
_D

E
…

The Average Access Times of Standard Sensors

The Average Access Times of Location Sensors

Fig. 8: The average access times during Launch Phase to each
type of sensors in each category of Google Play Store market.

TABLE 10: Percentage of sensor usages during the Silent
Phase in three different markets.

Overall Launch Phase Silent Phase

Wandoujia 33.40% 28.82% 13.92%
360 37.67% 34.90% 16.62%
GooglePlay Store 22.40% 19.36% 5.44%

Total 29.82% 26.32% 11.01%

6.2.2 Silent Phase

We carefully reviewed all the records and filtered out the ap-
plications which accessed sensors during the Silent Phase for
each markets respectively, since any usage in this phase can
be regarded as suspicious usages. Still, no matter in which
one of the markets, accesses to location sensors prevail and
the next is standard sensors. There are 13.9% applications
in Wandoujia accessing sensors during Silent Phase while for
360 the ratio is 16.6%. However, for Google Play Store, the
ratio is far more lower. Only 5.4% of applications in it tried
to access sensors. Interestingly, we find that quite a portion
of applications access the sensors with a certain time interval
and a fixed accessing period. This interval can be one hour,
or two hours and the access may last for 2 seconds or even
longer. We further study the reason why it happens and we
would give a deeper discussion about suspicious usages in
Silent Phase in Section 6.3.

6.2.3 Comparison and Summary

After the data collection and statistics, we analyze the results
of both Launch Phase and Silent Phase, and make a compar-
ison of the overall sensor usages in these three markets in
Table 10. We can read from the table that sensors are used
widely in Wandoujia and 360, even in Silent Phase. And the
usages of location sensors and standard sensors in different
stages are also given in Table 11. Besides, both the usage
of graphic sensors and the usage of audio sensors are less
frequent, and the percentages are less than 1.0%, no matter
in Launch Phase or Silent Phase. For Google Play Store, there
is an observable gap between its usage ratio and the ratio
of the other two markets. Considering that the applications
we collected are applications on the top free charts, and the
dominant user group of these three markets are different,
we can reasonably conclude that the users of Google Play

1545-5971 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2017.2768536, IEEE
Transactions on Dependable and Secure Computing

11

TABLE 11: Percentage of location sensors and standard
sensors in different markets in different stages. The data is
presented in the format of usage percentage in Launch Phase/
usage percentage in Silent Phase.

GPS Standard Sensors

Wandoujia 23.26% / 12.33% 12.13% / 1.99%
360 28.25% / 14.40% 11.63% / 3.60%
Google Play Store 12.64% / 4.64% 7.68% / 2.66%

Chinese App Markets 25.35% / 13.19% 11.92% / 2.66%

Overall 20.01% / 9.60% 10.14% / 2.01%

Store may be more likely to download the sensor-friendly
applications.

Sensors are widely used in various categories of appli-
cations. In Wandoujia, over 60% of the applications in Travel
and Lifestyle ever accessed sensors during our experiments,
no matter in Launch Phase or Silent Phase. While nearly
half of the applications under Shopping, Video and Games
used sensors more or less. In 360, Health&Medical, Shopping,
Lifestyle and Games are in the front rank. At last, in Google
Play Store, applications in Lifestyle, Social and Travel&Local
behaved actively. Although the category lists of each ap-
plication market are not totally the same, we can still find
that certain categories of applications behave more actively
than the others. For example, Lifestyle and Games are two
representative categories in which sensors are extensively
accessed.

6.3 Analysis and Case Study
As we mentioned above, any sensor access in Silent Phase
is regarded as suspicious usage. In order to find out the
applications which generated a huge amount of sensor data
in our experiment, especially during Silent Phase, and how
the sensor data would be used, we drill down into every
application that accesses sensors in Silent Phase. Specifically,
we reverse-engineer the APK files and explore the source
codes to figure out what the accessed sensor data are used
for. Then we compare the usages with the description and
privacy policy of applications.

6.3.1 Sensor Access Patterns and Third-Party Libraries
After reverse-engineering the APK files, we find that most
of them access location sensors by third-party ad libraries or
analytic libraries. In order to trace the data flow, we firstly
scan the source codes for the sensor-related API and record
the third-party package names if any. Next, combining with
the access records and the applications’ basic information
we collected beforehand, we judge if there is any abuse or
misuse of sensor data.

Among all applications in Wandoujia, there are 70 ap-
plications which accessed sensors during Silent Phase, and
53 of them accessed in a relatively high frequency. Because
part of the applications applied anti-reverse engineering
technologies or the tools we used to reverse-engineer exist
deficiencies, we can only get the source codes of 42 appli-
cations. Most of the applications accessed sensors according
to an obvious pattern. For example, there are 16 applica-
tions accessed location service every 4,850 seconds. This
is because all of them contain a third-party library named
cn.jpush.android, which includes the codes that will call the

TABLE 12: Top third-party libraries which appears the most
frequently in our experiments.

Market Package Name of Third-Party Libraries Times

360 cn.jpush.android 13
com.baidu.location 12
com.tencent.map 7

Wandoujia cn.jpush.android 22
com.tencent.map 14
com.baidu.location 9
com.qq.e.comm.managers.status 8
com.loc 7
com.amap.api.location 7
com.aps 7
com.alipay.mobilesecuritysdk.model 6
com.tencent.mm.sdk.platformtools 6

Google Play Store com.flurry.sdk 9
gms 9

location sensors related services. In other cases, there are
6 applications contain the location sensor calling methods
both in themselves and the third-party libraries they em-
ploy, and only one application’s sensor related codes are
not contained in third-party libraries. Therefore, the overall
percentage of sensor accessing in third-party libraries is
83.33%.

For 360 market, there are 48 applications accessed
sensors frequently during Silent Phase. After successfully
reverse-engineering 28 of them, we find that, similarly to
the case in Wandoujia, 6 applications present an accessing
pattern with a fixed accessing interval of 4,850 seconds,
which is caused by cn.jpush.android as well. 75% of the appli-
cations are found containing the sensor accessing codes in
their third-party libraries. This phenomenon further verifies
the fact that third-party libraries are blamed for the frequent
suspicious accessing of sensors during Silent Phase.

While in Google Play Store, we do not find a uniform
pattern since the accesses during Silent Phase are fewer than
that of the above two markets. There are 34 applications
accessed sensors during Silent Phase and only 18 of them
accessed in a relatively high frequency. However, we still
find that 12 applications accessed sensors because of the
related codes in third-party libraries’ packages, which ac-
count for 66.67% of the total. And the other 6 applications
contain the sensor accessing codes both in themselves and
their containing third-party libraries.

From all the studies above, we find that 77.27% of the
accessing records are caused by the third-party libraries. Ta-
ble 12 shows the top third-party libraries which are used in
our experiments. It reasonably explains the reason why the
applications belongs to Finance and other categories, which
seems to have no need to access sensors frequently, would
generate so many accessing records in our experiment:
although the applications themselves may have no intention
to fetch any sensor data while running in the background,
the third-party libraries call the sensor related service, which
disobey the original motivation of the applications’ develop-
ers. This possibility of sensor usages in third-party libraries
can hardly be noticed by the developers and thus they
would not mentioned in applications’ descriptions, which
would mislead the users and bring about the risk of privacy
leakage.

As a result, we argue that a responsible application

1545-5971 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2017.2768536, IEEE
Transactions on Dependable and Secure Computing

12

TABLE 13: The application packages which access the loca-
tion sensor data during Silent Phase and their corresponding
usage scenario.

package name scenario package name scenario

com.letv.android.client 4 com.nd.android.pandahome2 5
cn.ledongli.ldl 3 viva.reader 1
com.jsmcc 2 com.cmcm.whatscall 1
com.vlocker.locker 2 com.handmark.expressweather 3
com.cleanmaster.mguard cn 3 com.pingenie.screenlocker 2

TABLE 14: The application packages which access the stan-
dard sensor data during Silent Phase and their correspond-
ing usage scenario.

package name usage scenario

com.cleanmaster.mguard cn 3
cld.navi.mainframe 1
com.lashou.groupurchasing 2
com.taobao.ju.android 1
com.ubercab 1

should not only give a detailed description of the appli-
cation’s functionalities, but also list the sensor permissions
required by both the application and its contained third-
party libraries if any. Moreover, the description should
clarify that which kind of sensor will be used under what
circumstances, thus to eliminate the worries about privacy
information leakage from users.

6.3.2 Suspicious Case Study

We further traced the data flow and summarized the con-
crete usage scenarios of the sensor data. Basically, we fo-
cus on the applications themselves how to use the data
rather than the third-party libraries. After the analysis, we
summarize the usage scenarios of location sensors’ data as
following:

1) Sending the collected sensor data to a specific server,
but the further use can not be traced.

2) Using the collected data as a keyword for other infor-
mation, e.g., pulling down the local weather informa-
tion after accessing the location sensor and getting the
location information.

3) Storing the collected data locally on device for the
possible future use.

4) Exporting the sensor data to the system logs.
5) Doing nothing at all.

Based on the different usage scenarios, we categorize the
application packages according to their usage in Table 13.
Besides, we also have an insight into the usages of standard
sensor data. Basically, we can divide the ways they are used
into as following: (1) Testing the device’s rotation angle;
(2) Testing the device’s shaking; (3) Testing the brightness
surrounding. And a detailed result is shown in Table 14.

At last, we investigated all the descriptions displayed on
the application markets of applications mentioned above,
and found that none of them notices the possible sensor
usage. Thus we want to emphasize the importance of appli-
cation’s description, and insist that the developers should
be responsible for clarifying the third-party libraries used in
the application and which of them would possibly cause the
use of sensors.

7 DISCUSSION

7.1 Coverage
senDroid can implement sensing audit by (1) intercepting the
IPC between applications and services or (2) intercepting the
communication with sensor drivers. Considered in terms of
generality, all four categories sensors can be audited by the
first approach because the IPC mechanisms are uniform in
different version of Android. The first approach can be de-
toured by attacks that directly access sensor drivers without
communicating with the sensor service. So with respect to
robustness, senDroid can intercept the communication with
sensor drivers to defense the attacks or detect suspicious
accesses to sensors.

The coverage of the second approach depends on the
source code of sensor drivers we can analyze. For graphic
sensors and audio sensors, Linux kernel provides standard
device drivers. Thus, by making the interception according
to the standard invocation mode, senDroid is capable of
auditing all accesses to graphic and audio sensors. For
location sensors, with no device driver provided by Linux
kernel, senDroid only supports sensing audit on devices that
use Qualcomm GPS driver. Because the driver of standard
sensors on Nexus 4 is close-source, senDroid only imple-
ments the sensing audit by intercepting the IPC between
applications and services. We argue that, with the support of
manufacturers of sensors, the location sensors and standard
sensors can be audited by intercepting the communication
with sensor drivers.

7.2 Suspicious Usage Patterns
senDroid provides users with the detailed and visual sensing
usage reports. Users can infer from the usage reports which
stealthy application is accessing sensors at an unexpected
time or with an abnormal data size. For professional users,
the reports of senDroid may offer more technical details, and
help the professional users find more suspicious accesses to
sensors. However, senDroid does not support the suspicious
usage pattern recognition now. This absence could bring up
a burden on common users, especially, when the sensing
relevant applications are widely used.

A possible solution is to collect plenty of sensor data
usage patterns of malwares. Then we can mine classifi-
cation rules by applying machine learning on the usage
patterns. Based on the suspicious usage patterns, we can
then improve Sensing Monitor to be an application which
can automatically identify the suspicious usage of running
applications, and alert users if the alert rules are applied.

7.3 Bypassing senDroid
senDroid implements the sensing audit by intercepting the
data flow and the interception relies on substituting function
pointers in the ELF file of a target process. A malicious
application can apply the similar interception to bypass
senDroid either by substituting the sensor-related system
calls for its own implementation, or by breaking down
senDroid completely.

However, it is challenging for the attacker because the
malicious application must call ptrace to attach to the
target process before function substitution. So if senDroid is
attached to the target process before the attacker, according

1545-5971 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2017.2768536, IEEE
Transactions on Dependable and Secure Computing

13

to the documentation of ptrace [33], the later attaching
will cause error and thus fail. senDroid is attached to target
processes as soon as the system is launched. Even when
attacker makes the attachment before senDroid, we can be
informed of the abnormal behavior and give the user a
warning.

8 RELATED WORK

Hooking is a technique for inserting codes into a system call
for alteration, and it can be used to intercept the applica-
tions’ requests, thus to realize the sensor-related behavior
check. Xu et al. developed Aurasium in [27]. Aurasium can
keep on monitoring any security or privacy violations in
Android OS. Basically, Aurasium realizes the enforcement
of its security policies by hooking into applications pro-
cesses. FireDroid [34] is another work that relies on hooks.
It intercepts the system calls to identify if an application is
executing dangerous actions at runtime. Similarly, FireDroid
performs security checks on applications and enforces secu-
rity policies. DeepDroid [35], a dynamic enterprise security
policy enforcement scheme on Android devices, also dy-
namically hooks system processes in order to find details of
applications’ requests for a fine-grained access control. Box-
ify [36] presents a concept for full-fledged app sandboxing
on stock Android and it also aims at enforcing established
security policies. Although the core technique used in these
works are similar to ours, however, no matter in Aurasium,
FireDroid, DeepDroid or Boxify, they aim at realizing a policy-
based security, which means they design the system with
hooks in order to apply some specific security policies to
prevent users from attacks, while our work is different from
others by focusing on auditing sensor access in Android
system-wide.

Besides hooking, another technique is to modify the
existing Android sensor framework to intercept the sen-
sor data flow. Xu et al. [37] proposed a sensor manage-
ment framework, called SemaDroid, based on the SemaHooks,
which are not real hooks but are codes embedded within
the existing components in the Android framework. Se-
maDroid provides the users with capacity of monitoring the
sensor usage of installed applications and also provides
a fine-grained and context-aware access control. Basically,
SemaDroid focuses on supporting of context-aware and
quality-of-sensing based access control policies though it
offers the possibility of auditing the sensor usage by giving
a sensor usage report as an individual application as well.

ipShield [38] is a framework that monitors sensor ac-
cessed by an application and assesses the privacy risk of
the sensor access. Besides, it also gives recommendations
of sensor configurations to users and supports sensor re-
lated access control actions. Scippa [39], an extension to
the Android IPC mechanism, provides provenance infor-
mation required to effectively prevent recent attacks such
as confused deputy attacks. Heuser et al. [40] proposed the
Android Security Modules (ASM) framework, which pro-
vides a programmable interface for defining new reference
monitors for Android. Particular reference monitor can be
developed to monitor sensor access. These designs can be
bypassed in the access mode of JNI, where the accesses to
sensors do not pass the Android framework layer. Different
from these works, senDroid implements the interception at

the device driver layer without any modification to the
Android framework. So senDroid can be widely deployed
and is capable of detecting potential attacks that bypass
the Android framework. senDroid can not only detect which
application is accessing which sensor but also quantify how
many data the application accessed. Furthermore, the hook-
based method can audit applications even when they bypass
the Android framework via JNI invocations. The implemen-
tation and evaluation show that senDroid is effective and
efficient to audit sensing in the Android platform.

Enck et al. [5] proposed a dynamic taint tracking and
analysis system, named TaintDroid, that is capable of si-
multaneously tracking multiple sources of sensitive data.
DroidTrack is a method proposed in [41] for tracking and
visualizing the transmission of privacy information and
preventing its leakage. AppIntent [42], a framework analyzes
data diffusion to help an analyst to determine whether the
data diffusion is user intended or not. These mechanisms
can track the target data, including personal privacy. The
tracking reports of them are very limited while senDroid
reveals more details of the sensing operations.

Wijesekeraet al. [43] did a field study to find how often
applications access protected resources when users are not
expecting it on Android platform and they hooked the
permission-checking APIs in data collection step. However,
in their study, they focus on the permissions or resources
of connectivity, location, view, and so on. In senDroid, we
implement a meticulous study focusing on sensors on the
Android platform.

9 CONCLUSION AND FUTURE WORK

This paper proposes senDroid, which may be used to mon-
itor and analyze the sensing operations in the Android
platform. To the best of our knowledge, it is the first work
to design a tool to audit the sensing in the Android platform
without the changes of the source codes of the Android
framework. senDroid leverages a hook-based method to
implement the interception of the sensor related API calls.
According to the results of our conducted experiments,
senDroid can efficiently gather the data of all four categories
of sensors in the Android platform, i.e., graphic sensors,
audio sensors, location sensors, and standard sensors, with
high accuracy. In addition, senDroid can work even when
suspicious or malicious codes are dynamically loaded from
server sides or bypass the middleware of Android via JNI
calls. Next, senDroid can monitor the suspicious behaviors
where an application extracts the graphic data from the
preview frames of a camera to silently take photos. This
behavior can bypass the alert of the shutter voice which
is mandatorily open in some countries, such as China. The
performance report shows that the [0.04-8.05]% overheads
for different operations are promising. Finally, our empirical
study on applications from real markets shows that it is
very high-frequent for popular applications in Wandoujia,
360 and Google Play Store to access sensors. We also find
that many applications access location sensors and standard
sensors when applications are running in the background
and third-party libraries are blamed for the continuous
accesses, but the developers do not declare the usage in the
description or privacy policy of the application. To the best

1545-5971 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2017.2768536, IEEE
Transactions on Dependable and Secure Computing

14

of our knowledge, it is also the first empirical study on the
dynamic usages of sensors of Android applications.

In our future work, we plan to conduct more experi-
ments for a large scale applications to discover more cases
of suspicious and malicious usages of sensors. In addition,
we will improve our analysis tool to automatically report
the malicious usages based on our gathered data and other
relevant data of applications, such as application descrip-
tions. Last but not least, we will support the further sensing
audit under the supports of device manufactures.

ACKNOWLEDGMENT

This paper is supported by NSFC (Grant No. 61572136,
61370080), the National Program on Key Basic Research
(2015CB358800), and the Shanghai Innovation Action
Project (Grant No. 16DZ1100200). We thanks all anonymous
reviewers for their insightful comments. We are now sharing
all source codes of senDroid on GitHub (https://github.
com/letitb/senDroid).

REFERENCES

[1] L. Atzoria, A. Ierab, and G. Morabitoc, “The internet of things: A
survey,” Computer Networks, pp. 2787–2805, 2010.

[2] R. Liu, “Alipay dismisses accusation it violated user-privacy
by snapping photos,” http://www.allchinatech.com/alipay-
dismisses-accusation-it-violated-user-privacy-by-snapping-
photos/, accessed 2016.

[3] L. Cai and H. Chen, “Touchlogger: Inferring keystrokes on touch
screen from smartphone motion.” HotSec, vol. 11, pp. 9–9, 2011.

[4] Y. Michalevsky, D. Boneh, and G. Nakibly, “Gyrophone: Recog-
nizing speech from gyroscope signals,” in 23rd USENIX Security
Symposium, 2014, pp. 1053–1067.

[5] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox,
J. Jung, P. McDaniel, and A. N. Sheth, “Taintdroid: an information-
flow tracking system for realtime privacy monitoring on smart-
phones,” TOCS, vol. 32, no. 2, p. 5, 2014.

[6] J. Han, E. Owusu, L. T. Nguyen, A. Perrig, and J. Zhang, “Accom-
plice: Location inference using accelerometers on smartphones,”
in COMSNETS 2012. IEEE, 2012, pp. 1–9.

[7] S.-W. Lee and K. Mase, “Activity and location recognition using
wearable sensors,” IEEE pervasive computing, vol. 1, no. 3, pp. 24–
32, 2002.

[8] P. Mohan, V. N. Padmanabhan, and R. Ramjee, “Nericell: rich mon-
itoring of road and traffic conditions using mobile smartphones,”
in Proceedings of the 6th SenSys. ACM, 2008, pp. 323–336.

[9] T. Watanabe, M. Akiyama, and T. Mori, “Routedetector: sensor-
based positioning system that exploits spatio-temporal regularity
of human mobilty,” in Usenix Conference on Offensive Technologies,
2015, pp. 6–6.

[10] D. Currie, “Shedding some light on voice authentication,” 2009.
[11] A. Al-Haiqi, M. Ismail, and R. Nordin, “On the best sensor

for keystrokes inference attack on android,” Procedia Technology,
vol. 11, pp. 989–995, 2013.

[12] R. Spreitzer, “Pin skimming: Exploiting the ambient-light sensor in
mobile devices,” in Proceedings of the 4th ACM Workshop on Security
and Privacy in Smartphones & Mobile Devices. ACM, 2014, pp. 51–
62.

[13] H. Bojinov, Y. Michalevsky, G. Nakibly, and D. Boneh, “Mobile
device identification via sensor fingerprinting,” arXiv preprint
arXiv:1408.1416, 2014.

[14] S. Dey, N. Roy, W. Xu, R. R. Choudhury, and S. Nelakuditi,
“Accelprint: Imperfections of accelerometers make smartphones
trackable.” in NDSS. Citeseer, 2014.

[15] H. Wang, D. Lymberopoulos, and J. Liu, “Sensor-based user au-
thentication,” in Wireless Sensor Networks. Springer, 2015, pp.
168–185.

[16] T. Schreiber, “Android binder,” A shorter, more general work, but
good for an overview of Binder. http://www. nds. rub. de/media/attach-
ments/files/2012/03/binder. pdf, 2011.

[17] Android, “Android interface and architecture,” https://source.
android.com/devices/, accessed 2015.

[18] B. Nguyen, “Linux dictionary,” 2003.

[19] eLinux.org, “Executable and linkable format (elf),”
http://elinux.org/Executable and Linkable Format (ELF),
accessed 2015.

[20] E. Bendersky, “Position independent code (pic) in shared
libraries,” http://eli.thegreenplace.net/2011/11/03/position-
independent-code-pic-in-shared-libraries/, accessed 2015.

[21] J. Shewmaker, “Analyzing dll injection,” GSM Presentation, 2006.
[22] P. Padala, “Playing with ptrace, part ii,” Linux J, vol. 104, p. 4, 2002.
[23] Z. Xu, K. Bai, and S. Zhu, “Taplogger: Inferring user inputs

on smartphone touchscreens using on-board motion sensors,” in
Proceedings of the 5th WiSec. ACM, 2012, pp. 113–124.

[24] R. Schlegel, K. Zhang, X.-y. Zhou, M. Intwala, A. Kapadia, and
X. Wang, “Soundcomber: A stealthy and context-aware sound
trojan for smartphones.” in NDSS, vol. 11, 2011, pp. 17–33.

[25] Z. Zhang, P. Liu, J. Xiang, J. Jing, and L. Lei, “How your phone
camera can be used to stealthily spy on you: Transplantation
attacks against android camera service,” in Proceedings of the 5th
CODASPY. ACM, 2015, pp. 99–110.

[26] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri, “A study
of android application security.” in USENIX security symposium,
vol. 2, 2011, p. 2.

[27] R. Xu, H. Saı̈di, and R. Anderson, “Aurasium: Practical policy
enforcement for android applications,” in Presented as part of the
21st USENIX Security Symposium, 2012, pp. 539–552.

[28] typcn, “typcn on twitter,” https://twitter.com/typcn com/
status/701706390218231808, accessed: 2016-05-10.

[29] bunnyblue, “Acdd,” https://github.com/bunnyblue/ACDD, ac-
cessed: 2016-05-10.

[30] AnTuTu, “Antutu benchmark 3d- android apps on google play,”
https://play.google.com/store/apps/details?id=com.antutu.
benchmark.full, accessed: 2016-05-10.

[31] Android, “Audio capture,” https://developer.android.com/
guide/topics/media/audio-capture.html, accessed 2016.

[32] ——, “Sensors overview,” https://developer.android.com/
guide/topics/sensors/sensors overview.html#sensors-practices,
accessed 2016.

[33] M. Kerrisk, “ptrace(2),” http://man7.org/linux/man-
pages/man2/ptrace.2.html, accessed 2016.

[34] G. Russello, A. B. Jimenez, H. Naderi, and V. D. M. Wannes, “Fire-
droid: hardening security in almost-stock android,” in Computer
Security Applications Conference, 2013, pp. 319–328.

[35] X. Wang, K. Sun, Y. Wang, and J. Jing, “Deepdroid: Dynamically
enforcing enterprise policy on android devices,” in Network and
Distributed System Security Symposium, 2015.

[36] M. Backes, S. Bugiel, C. Hammer, O. Schranz, and P. Von Styp-
Rekowsky, “Boxify: full-fledged app sandboxing for stock an-
droid,” in Usenix Security Symposium, 2015, pp. 691–706.

[37] Z. Xu and S. Zhu, “Semadroid: A privacy-aware sensor man-
agement framework for smartphones,” in Proceedings of the 5th
CODASPY. ACM, 2015, pp. 61–72.

[38] S. Chakraborty, C. Shen, K. R. Raghavan, Y. Shoukry, M. Millar,
and M. Srivastava, “ipshield: a framework for enforcing context-
aware privacy,” in NSDI 14, 2014, pp. 143–156.

[39] M. Backes, S. Bugiel, and S. Gerling, “Scippa: system-centric ipc
provenance on android,” in Computer Security Applications Confer-
ence, 2014, pp. 36–45.

[40] S. Heuser, A. Nadkarni, W. Enck, and A. R. Sadeghi, “Asm: A
programmable interface for extending android security,” 2014.

[41] S. Sakamoto, K. Okuda, R. Nakatsuka, and T. Yamauchi, “Droid-
track: Tracking and visualizing information diffusion for prevent-
ing information leakage on android,” JISIS, vol. 4, no. 2, pp. 55–69,
2014.

[42] Z. Yang, M. Yang, Y. Zhang, G. Gu, P. Ning, and X. S. Wang,
“Appintent: Analyzing sensitive data transmission in android for
privacy leakage detection,” in Proceedings of the 2013 CCS. ACM,
2013, pp. 1043–1054.

[43] P. Wijesekera, A. Baokar, A. Hosseini, S. Egelman, D. Wagner, and
K. Beznosov, “Android permissions remystified: a field study on
contextual integrity,” in Usenix Conference on Security Symposium,
2015, pp. 499–514.

