5. Duality

- Lagrange dual problem
- weak and strong duality
- geometric interpretation
- optimality conditions
- perturbation and sensitivity analysis
- examples
- generalized inequalities
Lagrangian

standard form problem (not necessarily convex)

\[
\begin{align*}
\text{minimize} & \quad f_0(x) \\
\text{subject to} & \quad f_i(x) \leq 0, \quad i = 1, \ldots, m \\
& \quad h_i(x) = 0, \quad i = 1, \ldots, p
\end{align*}
\]

variable \(x \in \mathbb{R}^n \), domain \(\mathcal{D} \), optimal value \(p^* \)

Lagrangian: \(L : \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R} \), with

\[\text{dom } L = \mathcal{D} \times \mathbb{R}^m \times \mathbb{R}^p, \]

\[
L(x, \lambda, \nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x)
\]
• weighted sum of objective and constraint functions
• λ_i is Lagrange multiplier associated with $f_i(x) \leq 0$
• ν_i is Lagrange multiplier associated with $h_i(x) = 0$
Lagrange dual function

Lagrange dual function: $g : \mathbb{R}^m \times \mathbb{R}^p \rightarrow \mathbb{R}$,

$$g(\lambda, \nu) = \inf_{x \in \mathcal{D}} L(x, \lambda, \nu)$$

$$= \inf_{x \in \mathcal{D}} \left(f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x) \right)$$

g is concave, can be $-\infty$ for some λ, ν

lower bound property: if $\lambda \succeq 0$, then $g(\lambda, \nu) \leq p^*$
proof: if \(\tilde{x} \) is feasible and \(\lambda \succeq 0 \), then

\[
f_0(\tilde{x}) \geq L(\tilde{x}, \lambda, \nu) \geq \inf_{x \in D} L(x, \lambda, \nu) = g(\lambda, \nu)
\]

minimizing over all feasible \(\tilde{x} \) gives \(p^* \geq g(\lambda, \nu) \)
Least-norm solution of linear equations

minimize \(x^T x \)
subject to \(Ax = b \)

dual function
• Lagrangian is $L(x, \nu) = x^T x + \nu^T (Ax - b)$
• to minimize L over x, set gradient equal to zero:

$$\nabla_x L(x, \nu) = 2x + A^T \nu = 0 \implies x = -(1/2) A^T \nu$$

• plug in in L to obtain g:

$$g(\nu) = L((-1/2) A^T \nu, \nu) = -\frac{1}{4} \nu^T A A^T \nu - b^T \nu$$

a concave function of ν
lower bound property: $p^* \geq -(1/4)\nu^T A A^T \nu - b^T \nu$ for all ν
Standard form LP

minimize \(c^T x \)
subject to \(Ax = b, \quad x \geq 0 \)

dual function
• Lagrangian is

\[L(x, \lambda, \nu) = c^T x + \nu^T (A x - b) - \lambda^T x \]
\[= -b^T \nu + (c + A^T \nu - \lambda)^T x \]

• \(L \) is affine in \(x \), hence

\[g(\lambda, \nu) = \inf_x L(x, \lambda, \nu) = \begin{cases}
- b^T \nu & A^T \nu - \lambda + c = 0 \\
- \infty & \text{otherwise}
\end{cases} \]

\(g \) is linear on affine domain \(\{ (\lambda, \nu) \mid A^T \nu - \lambda + c = 0 \} \), hence concave

lower bound property: \(p^* \geq -b^T \nu \) if \(A^T \nu + c \succeq 0 \)
Two-way partitioning

Given a set of nodes, e.g., from a graph, classify them into two sets.

- How to formulate the original problem?
- relaxation
Two-way partitioning

minimize \(x^T W x \)
subject to \(x_i^2 = 1, \quad i = 1, \ldots, n \)

- a nonconvex problem; feasible set contains \(2^n \) discrete points

- interpretation: partition \(\{1, \ldots, n\} \) in two sets; \(W_{ij} \) is cost of assigning \(i, j \) to the same set; \(-W_{ij} \) is cost of assigning to different sets
dual function

\[g(\nu) = \inf_{x} (x^T W x + \sum_{i} \nu_i (x_i^2 - 1)) = \inf_{x} x^T (W + \text{diag}(\nu)) x - 1^T \nu \]

\[= \begin{cases}
-1^T \nu & W + \text{diag}(\nu) \succeq 0 \\
-\infty & \text{otherwise}
\end{cases} \]

lower bound property: \(p^* \geq -1^T \nu \) if \(W + \text{diag}(\nu) \succeq 0 \)

example: \(\nu = -\lambda_{\text{min}}(W) 1 \) gives bound \(p^* \geq n\lambda_{\text{min}}(W) \)
The dual problem

Lagrange dual problem

maximize \(g(\lambda, \nu) \)
subject to \(\lambda \geq 0 \)

- finds best lower bound on \(p^* \), obtained from Lagrange dual function
- a convex optimization problem; optimal value denoted \(d^* \)
- \(\lambda, \nu \) are dual feasible if \(\lambda \geq 0, (\lambda, \nu) \in \text{dom} \, g \)
- often simplified by making implicit constraint \((\lambda, \nu) \in \text{dom} \, g \) explicit
example: standard form LP and its dual (page 5–9)

minimize \(c^T x \)
subject to \(Ax = b \)
\(x \geq 0 \)

maximize \(-b^T \nu\)
subject to \(A^T \nu + c \geq 0\)
Weak and strong duality

Weak duality: \(d^* \leq p^* \)

- always holds (for convex and nonconvex problems)
- can be used to find nontrivial lower bounds for difficult problems

for example, solving the SDP

\[
\text{maximize} \quad -1^T \nu \\
\text{subject to} \quad W + \text{diag}(\nu) \succeq 0
\]

gives a lower bound for the two-way partitioning problem on page 5–12
strong duality: \(d^* = p^* \)

- does not hold in general
- (usually) holds for convex problems
- conditions that guarantee strong duality in convex problems are called **constraint qualifications**
Slater’s constraint qualification

strong duality holds for a convex problem

minimize \(f_0(x) \)
subject to \(f_i(x) \leq 0, \quad i = 1, \ldots, m \)
\(Ax = b \)

if it is strictly feasible, \textit{i.e.},

\[\exists x \in \text{int} \mathcal{D} : \quad f_i(x) < 0, \quad i = 1, \ldots, m, \quad Ax = b \]
• also guarantees that the dual optimum is attained (if $p^* > -\infty$)

• can be sharpened: e.g., can replace $\text{int} \mathcal{D}$ with $\text{relint} \mathcal{D}$ (interior relative to affine hull); linear inequalities do not need to hold with strict inequality, . . .

• there exist many other types of constraint qualifications
Inequality form LP

primal problem

minimize \(c^T x \)
subject to \(Ax \preceq b \)

dual function

\[
g(\lambda) = \inf_x ((c + A^T \lambda)^T x - b^T \lambda) = \begin{cases}
- b^T \lambda & A^T \lambda + c = 0 \\
-\infty & \text{otherwise}
\end{cases}
\]

dual problem

maximize \(- b^T \lambda\)
subject to \(A^T \lambda + c = 0, \quad \lambda \succeq 0\)
• from Slater’s condition: \(p^* = d^* \) if \(A\tilde{x} < b \) for some \(\tilde{x} \)

• in fact, \(p^* = d^* \) except when primal and dual are infeasible
Quadratic program

primal problem (assume $P \in \mathbf{S}^n_{++}$)

minimize $x^T Px$

subject to $Ax \preceq b$

dual function

$$g(\lambda) = \inf_x (x^T Px + \lambda^T (Ax - b)) = -\frac{1}{4} \lambda^T AP^{-1} A^T \lambda - b^T \lambda$$

dual problem

maximize $-\left(\frac{1}{4}\right) \lambda^T AP^{-1} A^T \lambda - b^T \lambda$

subject to $\lambda \succeq 0$
• from Slater’s condition: \(p^* = d^* \) if \(A\tilde{x} < b \) for some \(\tilde{x} \)

• in fact, \(p^* = d^* \) always
Geometric interpretation

for simplicity, consider problem with one constraint \(f_1(x) \leq 0 \)

interpretation of dual function:

\[
g(\lambda) = \inf_{(u,t) \in \mathcal{G}} (t + \lambda u), \quad \text{where} \quad \mathcal{G} = \{(f_1(x), f_0(x)) \mid x \in \mathcal{D}\}
\]

\(\lambda u + t = g(\lambda) \) is (non-vertical) supporting hyperplane to \(\mathcal{G} \)
• hyperplane intersects t-axis at $t = g(\lambda)$
epigraph variation: same interpretation if G is replaced with

$$A = \{(u, t) \mid f_1(x) \leq u, f_0(x) \leq t \text{ for some } x \in D\}$$

strong duality

- holds if there is a non-vertical supporting hyperplane to A at $(0, p^*)$
• for convex problem, \mathcal{A} is convex, hence has supp. hyperplane at $(0, p^*)$

• Slater’s condition: if there exist $(\tilde{u}, \tilde{t}) \in \mathcal{A}$ with $\tilde{u} < 0$, then supporting hyperplanes at $(0, p^*)$ must be non-vertical
Complementary slackness

assume strong duality holds, \(x^* \) is primal optimal, \((\lambda^*, \nu^*) \) is dual optimal

\[
f_0(x^*) = g(\lambda^*, \nu^*) = \inf_x \left(f_0(x) + \sum_{i=1}^{m} \lambda^*_i f_i(x) + \sum_{i=1}^{p} \nu^*_i h_i(x) \right)
\]

\[
\leq f_0(x^*) + \sum_{i=1}^{m} \lambda^*_i f_i(x^*) + \sum_{i=1}^{p} \nu^*_i h_i(x^*)
\]

\[
\leq f_0(x^*)
\]

hence, the two inequalities hold with equality

- \(x^* \) minimizes \(L(x, \lambda^*, \nu^*) \)
\(\lambda_i^* f_i(x^*) = 0 \) for \(i = 1, \ldots, m \) (known as complementary slackness):

\[
\lambda_i^* > 0 \implies f_i(x^*) = 0, \quad f_i(x^*) < 0 \implies \lambda_i^* = 0
\]
Karush-Kuhn-Tucker (KKT) conditions

the following four conditions are called KKT conditions (for a problem with differentiable f_i, h_i):

1. primal constraints: $f_i(x) \leq 0, \ i = 1, \ldots, m$, $h_i(x) = 0, \ i = 1, \ldots, p$

2. dual constraints: $\lambda \succeq 0$

3. complementary slackness: $\lambda_i f_i(x) = 0, \ i = 1, \ldots, m$

4. gradient of Lagrangian with respect to x vanishes:

$$\nabla f_0(x) + \sum_{i=1}^{m} \lambda_i \nabla f_i(x) + \sum_{i=1}^{p} \nu_i \nabla h_i(x) = 0$$

Duality
• from page 5–28: if strong duality holds and x, λ, ν are optimal, then they must satisfy the KKT conditions

• the last condition can be generalized to non-differentiable functions.
KKT conditions for convex problem

if \(\tilde{x} \), \(\tilde{\lambda} \), \(\tilde{\nu} \) satisfy KKT for a convex problem, then they are optimal:

- from complementary slackness: \(f_0(\tilde{x}) = L(\tilde{x}, \tilde{\lambda}, \tilde{\nu}) \)
- from 4th condition (and convexity): \(g(\tilde{\lambda}, \tilde{\nu}) = L(\tilde{x}, \tilde{\lambda}, \tilde{\nu}) \)

hence, \(f_0(\tilde{x}) = g(\tilde{\lambda}, \tilde{\nu}) \)

if **Slater’s condition** is satisfied:

\(x \) is optimal if and only if there exist \(\lambda, \nu \) that satisfy KKT conditions

- recall that Slater implies strong duality, and dual optimum is attained
• generalizes optimality condition $\nabla f_0(x) = 0$ for unconstrained problem
example: water-filling (assume $\alpha_i > 0$)

\[
\begin{align*}
& \text{minimize } & - \sum_{i=1}^{n} \log(x_i + \alpha_i) \\
& \text{subject to } & x \succeq 0, \quad 1^T x = 1
\end{align*}
\]

x is optimal iff $x \succeq 0, 1^T x = 1$, and there exist $\lambda \in \mathbb{R}^n, \nu \in \mathbb{R}$ such that

\[
\begin{align*}
\lambda \succeq 0, \quad & \lambda_i x_i = 0, \quad \frac{1}{x_i + \alpha_i} + \lambda_i = \nu \\
\end{align*}
\]

- if $\nu < 1/\alpha_i$: $\lambda_i = 0$ and $x_i = 1/\nu - \alpha_i$
- if $\nu \geq 1/\alpha_i$: $\lambda_i = \nu - 1/\alpha_i$ and $x_i = 0$

- determine ν from $1^T x = \sum_{i=1}^{n} \max\{0, 1/\nu - \alpha_i\} = 1$
interpretation

- n patches; level of patch i is at height α_i
- flood area with unit amount of water
- resulting level is $1/\nu^*$
Perturbation and sensitivity analysis

(unperturbed) optimization problem and its dual

\[
\begin{align*}
\text{minimize} & \quad f_0(x) \\
\text{subject to} & \quad f_i(x) \leq 0, \quad i = 1, \ldots, m \\
& \quad h_i(x) = 0, \quad i = 1, \ldots, p
\end{align*}
\]

\[
\begin{align*}
\text{maximize} & \quad g(\lambda, \nu) \\
\text{subject to} & \quad \lambda \succeq 0
\end{align*}
\]

perturbed problem and its dual

\[
\begin{align*}
\text{min.} & \quad f_0(x) \\
\text{s.t.} & \quad f_i(x) \leq u_i, \quad i = 1, \ldots, m \\
& \quad h_i(x) = v_i, \quad i = 1, \ldots, p
\end{align*}
\]

\[
\begin{align*}
\text{max.} & \quad g(\lambda, \nu) - u^T \lambda - v^T \nu \\
\text{s.t.} & \quad \lambda \succeq 0
\end{align*}
\]

\bullet x is primal variable; u, v are parameters
• $p^*(u, v)$ is optimal value as a function of u, v

• we are interested in information about $p^*(u, v)$ that we can obtain from the solution of the unperturbed problem and its dual
global sensitivity result

assume strong duality holds for unperturbed problem, and that λ^*, ν^* are dual optimal for unperturbed problem

apply weak duality to perturbed problem:

\[
p^*(u, v) \geq g(\lambda^*, \nu^*) - u^T \lambda^* - v^T \nu^*
\]

\[
= p^*(0, 0) - u^T \lambda^* - v^T \nu^*
\]

sensitivity interpretation

• if λ_i^* large: p^* increases greatly if we tighten constraint i

 ($u_i < 0$)
• if λ_i^* small: p^* does not decrease much if we loosen constraint i ($u_i > 0$)

• if ν_i^* large and positive: p^* increases greatly if we take $v_i < 0$;
 if ν_i^* large and negative: p^* increases greatly if we take $v_i > 0$

• if ν_i^* small and positive: p^* does not decrease much if we take $v_i > 0$;
 if ν_i^* small and negative: p^* does not decrease much if we take $v_i < 0$
local sensitivity: if (in addition) \(p^*(u, v) \) is differentiable at \((0, 0)\), then

\[
\lambda_i^* = -\frac{\partial p^*(0, 0)}{\partial u_i}, \quad \nu_i^* = -\frac{\partial p^*(0, 0)}{\partial v_i}
\]

proof (for \(\lambda_i^* \)): from global sensitivity result,

\[
\frac{\partial p^*(0, 0)}{\partial u_i} = \lim_{t \searrow 0} \frac{p^*(te_i, 0) - p^*(0, 0)}{t} \geq -\lambda_i^* \]

\[
\frac{\partial p^*(0, 0)}{\partial u_i} = \lim_{t \nearrow 0} \frac{p^*(te_i, 0) - p^*(0, 0)}{t} \leq -\lambda_i^* \]

hence, equality

\(p^*(u) \) for a problem with one (inequality) constraint:
\[u \star (u) - \lambda \star u = 0 \]

\[p^*(0) - \lambda^* u \]
Duality and problem reformulations

- equivalent formulations of a problem can lead to very different duals
- reformulating the primal problem can be useful when the dual is difficult to derive, or uninteresting

Common reformulations

- introduce new variables and equality constraints
- make explicit constraints implicit or vice versa
- transform objective or constraint functions

\[\text{e.g., replace } f_0(x) \text{ by } \phi(f_0(x)) \text{ with } \phi \text{ convex, increasing} \]
Introducing new variables and equality constraints

\[
\begin{align*}
\text{minimize} & \quad f_0(Ax + b) \\
\text{dual function is constant:} & \quad g = \inf_x L(x) = \inf_x f_0(Ax + b) = p^* \\
\text{we have strong duality, but dual is quite useless}
\end{align*}
\]

reformulated problem and its dual

\[
\begin{align*}
\text{minimize} & \quad f_0(y) & \text{maximize} & \quad b^T \nu - f_0^*(\nu) \\
\text{subject to} & \quad Ax + b - y = 0 & \text{subject to} & \quad A^T \nu = 0
\end{align*}
\]
dual function follows from

\[
g(\nu) = \inf_{x,y} (f_0(y) - \nu^T y + \nu^T Ax + b^T \nu)
\]

\[
= \begin{cases}
- f_0^*(\nu) + b^T \nu & A^T \nu = 0 \\
- \infty & \text{otherwise}
\end{cases}
\]
norm approximation problem: minimize $\|Ax - b\|$

minimize $\|y\|

subject to $y = Ax - b$

can look up conjugate of $\| \cdot \|$, or derive dual directly

$$g(\nu) = \inf_{x,y} (\|y\| + \nu^T y - \nu^T Ax + b^T \nu)$$

$$= \begin{cases}
 b^T \nu + \inf_y (\|y\| + \nu^T y) & A^T \nu = 0 \\
 -\infty & \text{otherwise}
\end{cases}$$

$$= \begin{cases}
 b^T \nu & A^T \nu = 0, \quad \|\nu\|_* \leq 1 \\
 -\infty & \text{otherwise}
\end{cases}$$

(see page 5–6)
dual of norm approximation problem

maximize $b^T \nu$
subject to $A^T \nu = 0$, $\|\nu\|_* \leq 1$
Implicit constraints

LP with box constraints: primal and dual problem

minimize \(c^T x \)
subject to \(Ax = b \)
\(-1 \leq x \leq 1\)

maximize \(-b^T \nu - 1^T \lambda_1 - 1^T \lambda_2\)
subject to \(c + A^T \nu + \lambda_1 - \lambda_2 = 0 \)
\(\lambda_1 \geq 0, \quad \lambda_2 \geq 0 \)

reformulation with box constraints made implicit

minimize \(f_0(x) = \begin{cases} c^T x & -1 \leq x \leq 1 \\ \infty & \text{otherwise} \end{cases} \)
subject to \(Ax = b \)
dual function

\[
g(\nu) = \inf_{-1 \leq x \leq 1} (c^T x + \nu^T (Ax - b))
\]

\[
= -b^T \nu - \| A^T \nu + c \|_1
\]

dual problem: maximize \(-b^T \nu - \| A^T \nu + c \|_1\)
Feasibility problems

feasibility problem A (variables $x \in \mathbb{R}^n$)

$$f_i(x) < 0, \quad i = 1, \ldots, m, \quad h_i(x) = 0, \quad i = 1, \ldots, p$$

feasibility problem B (variables $\lambda \in \mathbb{R}^m, \nu \in \mathbb{R}^p$)

$$\lambda \succeq 0, \quad \lambda \neq 0, \quad g(\lambda, \nu) \geq 0$$

where $g(\lambda, \nu) = \inf_x \left(\sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x) \right)$

• feasibility problem B is convex (g is concave), even if problem A is not
• A and B are always **weak alternatives**: at most one is feasible

proof: assume \(\tilde{x} \) satisfies A, \(\lambda, \nu \) satisfy B

\[
0 \leq g(\lambda, \nu) \leq \sum_{i=1}^{m} \lambda_i f_i(\tilde{x}) + \sum_{i=1}^{p} \nu_i h_i(\tilde{x}) < 0
\]

• can prove infeasibility of A by producing solution of B and vice-versa
Summary

Duality is useful

- reveal additional structure of the primal problem (KKT)
- dual variables have practical interpretation (shadow price)
- the primal problem may be decomposed in dual and result in distributed solutions
- certificate for optimality