
SmartTransfer: Transferring Your Mobile Multimedia
Contents at the "Right" Time

Yichuan Wang, Xin Liu
Dept. of Computer Science

University of California, Davis
Davis, CA 95616

yicwang@ucdavis.edu,
xinliu@ucdavis.edu

Angela Nicoara
Deutsche Telekom Innovation

Laboratories
Silicon Valley Innovation

Center
Mountain View CA 94043

angela.nicoara@telekom.com

Ting-An Lin, Cheng-Hsin
Hsu

Dept. of Computer Science
National Tsing Hua University

Hsin Chu, Taiwan
tim19890901@gmail.com,

chsu@cs.nthu.edu.tw

ABSTRACT

Today’s mobile Internet is heavily overloaded by the increas-
ing demand and capability of mobile devices, in particular,
multimedia traffic. However, not all traffic is created equal,
and a large portion of multimedia contents on the mobile In-
ternet is delay tolerant. We study the problem of capitaliz-
ing the content transfer opportunities under better network
conditions via postponing the transfers without violating the
user-specified deadlines. We propose a new framework called
SmartTransfer, which offers a unified content transfer inter-
face to mobile applications. We also develop two scheduling
algorithms to opportunistically schedule the content trans-
fers. Via extensive trace-driven simulations, we show that
our algorithms outperform a baseline scheduling algorithm
by far: up to 17 times improvement in upload throughput
and/or at most 20 dBm boost in signal strength. The sim-
ulation results also reveal various tradeoff between the two
proposed scheduling algorithms. We have implemented our
framework and one of the scheduling algorithms on Android,
to demonstrate their practicality and efficiency.

Categories and Subject Descriptors

C.2.4 [Distributed Systems]: Distributed Applications

General Terms

Performance

Keywords

Opportunistic transfers, scheduling, resource conservation,
user profiling

1. INTRODUCTION
Recent mobile devices can generate and render multime-

dia contents, such as audios, images, and videos. These

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NOSSDAV’12, June 7–8, 2012, Toronto, Ontario, Canada.
Copyright 2012 ACM 978-1-4503-1430-5/12/06 ...$10.00.

mobile devices, however, are resource-constrained and have
to frequently transfer the multimedia contents from/to some
back-end servers or clouds. Cisco reports that mobile data
is expected to increase almost 40 times by 2015 and 66%
of this increase is due to mobile video [1]. In fact, the ser-
vice providers have moved away from unlimited dataplans
to tiered services [2] and may even consider time-dependent
pricing [9], which could increase the bills on the mobile
users. Therefore, modern mobile devices must regulate their
network resource consumption, i.e., become more network-
friendly.

To achieve this goal, we study an innovative approach of
regulating the network resource consumed by each mobile
user. A key observation is that not all traffic is created
equal: (i) Many popular mobile applications are delay tol-
erant. The delay tolerance of such traffic varies from sub-
seconds to hours; and (ii) Data from a large cellular net-
work shows that there exists a significant lag between con-
tent generation and user-initiated upload time, more than
55% multimedia contents uploaded from mobile network is
at least 1 day old [17]. We call such traffic elastic, which can
be leveraged to opportunistically schedule content transfers
when the network condition is more favorable in terms of,
e.g., signal strength, network throughput, energy consump-
tion, and access price. In other words, since mobile users
perceive time-varying channel condition and network load,
choosing the ”right” time to transfer each multimedia con-
tent is critical to system performance.

In this paper, we study how to capitalize the content
transfer opportunities under better network conditions via
postponing the transfers without violating the user-specified
deadlines. More specifically, when delay-tolerant content
is generated at a mobile device, one can opportunistically
schedule the transfer to minimize network/device resource
utilization, such as network air time or battery consumption.
Making such a decision (throughout the paper) is challeng-
ing for two reasons. First, implementing the decision mak-
ing logics in individual mobile applications is time consum-
ing, expensive, and error-prone. Hence, such optimization
techniques are unlikely to be adopted by mobile application
developers; many of them are freelance programmers. We
address this challenge by adding a new module called Smart-
Transfer in mobile operating systems, which provides a uni-
fied content transfer interface to applications. We present
the SmartTransfer framework in Sec. 2.

Request

API
OS

SmartTransfer

Apps

Profiler Scheduler

Queue

Decision

Signal Strength,
Network Throughput,
Energy Consumption,

Access Price, etc.

User Profiles, such as

Table
Generator

Figure 1: The proposed SmartTransfer framework.

Second, making such decisions requires prediction on fu-
ture network conditions, e.g., how soon and likely a mobile
device will enter a region with strong cellular network sig-
nals. A simple approach is to use the moving average of
past few samples [4,13]. While this approach may work for
small time scales (e.g., in a few minutes), it is less applica-
ble to large time scales because a mobile user may visit sev-
eral different locations and experience diverse network con-
ditions. We address this challenge by collecting longer, say
30 days, historical data on mobile devices, which are referred
to as user profiles throughout this paper. Individual human
mobility in large time scales is highly predictable [7, 16],
therefore profiles allow us to make more accurate predic-
tions because mobile user’s future network conditions are
time and location dependent. We present how we leverage
user profiles to design content transfer scheduling algorithms
in Sec. 3.

We evaluate the proposed framework and scheduling al-
gorithms in Sec. 4 via extensive trace-driven simulations.
The simulation results reveal that the proposed algorithms
outperform a baseline algorithm by up to 17 times in
terms of upload throughput and/or 20 dBm in terms of
signal strength. One of our proposed algorithms employs
a more comprehensive statistical model, and demands for
more resources. The other proposed algorithm employs
a lightweight model, and always terminates in 560 msecs
throughout all simulations. In Sec. 5, we implement the
SmartTransfer framework and OSSL algorithm on Android
and deploy a delay-tolerant application via the Android
Market, which demonstrate the practicality of the proposed
solution.

2. SMARTTRANSFER FRAMEWORK
Fig. 1 presents the SmartTransfer framework, which runs

on mobile devices and consists of three components: pro-
filer, scheduler, and API (Application Programming Inter-
face). The profiler collects user profiles, which are essentially
timestamped log files. The profiler itself can be general that
collects the network conditions in various performance met-
rics, including signal strength, network throughput, energy
consumption, and access price. Some of these metrics can
be retrieved from the network interfaces, such as the sig-
nal strength and network throughput, some of them may
be measured by on-board instruments, such as energy con-
sumption, and some of them could be provided by the cel-
lular service providers, such as the access price. The pro-
filer monitors the profile size to avoid filling up the storage
space. It also keeps the updated profile, and provides the

most recent, e.g., last three-month, profile to the scheduler.
The profile provides input to the scheduler that runs the
scheduling algorithms to make decisions on when to start
content transfer. For scheduling algorithms that cannot run
in real-time, we may pre-process the user profiles while the
mobile devices are charging and idling, in order to eliminate
the negative impacts on the user experience. The output
of the pre-processing step is typically a lookup table, and
thus is referred to as table generator as illustrated in Fig. 1.
In extreme cases, where the scheduling algorithms are too
complicated for mobile devices, we may even offload the ta-
ble generator to the cloud. Mobile applications connect to
the framework via the API and submit content transfer re-
quests, including the content size and delay requirement.
The SmartTransfer then helps the mobile applications to
schedule the user-generated multimedia contents to upload
them under good network conditions; they may also help
mobile applications to prefetch certain contents for later us-
age, perhaps chosen by a content recommender [3], under
good network conditions. The SmartTransfer framework
supports different optimization criteria, such as minimizing:
(i) network resource consumption, (ii) transfer duration, (iii)
energy consumption, and (iv) access cost. This is achieved
by choosing the corresponding user profiles and scheduling
algorithms.

3. SCHEDULING ALGORITHMS

3.1 Scheduling Model
In this section, we present a slotted scheduling model.

We consider a transfer request from the application layer,
which is available at time zero. There exists a hard dead-
line called horizon N , by which the data transfer must be
completed otherwise user experience will be disrupted. N

is a system parameter, which may be derived via exper-
imental studies on user tolerance on delay, and could be
application-dependent. To maximize user experience, a user
can request an instantaneous data transfer, via a user inter-
face, at any time slot. We model the time slot in which such
instantaneous transfer request occurs by a random variable
M called freeze time. The realization of M is unknown a
priori. For simplicity, we consider a content transfer that
can be finished in a time slot, while it is our future work
to generalizing our analysis to multiple and heterogeneous
content transfers. If user did not request an instantaneous
data transfer at time slot t (M > t), the scheduler makes a
decision Dt ∈ {Wait,Transfer}.

Fig. 2 summarizes the considered scheduling model. A
content is transferred at time slot t if (i) t = N , or (ii)
M = t, or (iii) Dt = Transfer. If Dt = Wait, the content is
delayed to time slot t+ 1.

Let Xt (t ∈ [1, N]) be the transfer cost at slot t. Waiting
costs nothing. Let Vt be the optimal cost to transfer a con-
tent between time slot t and N , assuming the optimal sched-
ule is applied. Vt can be calculated using the statistics of Xt

and M , which are derived from the user profile. In Secs. 3.2
and 3.3, we develop two scheduling algorithms, which em-
ploy different statistical models for the transfer costs Xt,
under different assumptions.

3.2 Optimal Stopping Scheduling (OSS)
We propose a scheduling algorithm that minimizes the

expected cost. Our algorithm is inspired by earlier work on

…
…

…
…

X
t

X
t+1

 D
t
=Wait

Transfer

D
t
=Transfer

M=t

Time

X
N

Forced at

Horizon

D
t+1

=Wait

D
t+1

=Transfer

M=t+1

Figure 2: The considered scheduling model.

classic optimal stopping problems [6, 14] that try to maxi-
mize the probability of finding the best candidate in a job
interview. To the best of our knowledge, the optimal stop-
ping problem for minimizing the expected cost with random
freeze time has not been rigorously studied. We refer to our
algorithm as optimal stopping scheduling (OSS).

The OSS algorithm employs a Markovian model to cap-
ture the transfer costs. In this model, the transfer cost Xt

depends on time, and previous transfer cost Xt−1. Statistics
for M and X are derived from user profiles.

The principle of optimality is as follows. If transfer costXt

is less or equal to the expect optimal cost E(Vt+1), transfer
at the time slot t, otherwise wait until time slot t+1. With
the above notations, the optimal schedule is written as:

Dt =















Transfer, M = t;

Transfer, M > t,Xt ≤ E(Vt+1|Xt);

Wait, M > t,Xt > E(Vt+1|Xt).

(1)

Due to its Markovian property, E(Vt|Xt−1) can be obtained
by backward induction:

E(VN |XN−1) =E(XN |XN−1);

E(Vt|Xt−1) =P (M = t|M ≥ t) · E(Xt|Xt−1)

+P (M > t|M ≥ t)·
∑

c

{P (Xt = c|Xt−1) ·min(c, E(Vt+1|Xt = c))}.

(2)

On mobile devices, at charging time, the optimal decision
Dt for all time and previous cost Xt−1 can be pre-calculated
and saved as a table. At runtime, we simply look up the ta-
ble using previous cost and time to find the optimal decision.
We call this pre-calculated data as the decision table.

The model presented in Eq. (1) and (2) are general, but
may come with some limitations. First, we need to accu-
mulate enough samples to accurately derive E(Xt|Xt−1) for
all t and Xt−1. Hence, the OSS algorithm requires a long
user profile for deriving model parameters. Second, let T be
the number of total time slot, and |X| be the number of all
possible transfer costs. The decision table has |X| ·T ·N ele-
ments, which is huge in the time scale that we are interested
in implementing the algorithm, e.g., one day. Computing
and storing the optimal schedule may be too demanding for
mobile devices. For example, consider 1 minute time slot in
1 day, 1 hour horizon, 30 different cost values, the decision

table is as large as 2.6 MB, which is significant to mobile
devices.

3.3 Lightweight Optimal Stopping Schedul-
ing (OSSL)

To alleviate the limitation of the OSS algorithm, we
propose a simplified optimal stopping algorithm. The
Lightweight Optimal Stopping Scheduling (OSSL) algorithm
leverages the same principle of optimality as the OSS algo-
rithm, but has a more relaxed assumption on the statistical
model of the transfer costs. In particular, OSSL assumes
that Xt are independent over time.

Following similar derivations of the OSS algorithm, we
write the optimal decision as:

Dt =















Transfer, M = t;

Transfer, M > t,Xt ≤ E(Vt+1);

Wait, M > t,Xt > E(Vt+1).

(3)

where

E(VN) =E(XN);

E(Vt) =P (M = t|M ≥ t) ·E(Xt)

+P (M > t|M ≥ t)

·[P (Xt ≤ E(Vt+1)) ·E(Xt|Xt ≤ E(Vt+1))

+P (Xt > E(Vt+1)) ·E(Vt+1)].

(4)

Note that the E(Vt) (1 ≤ t ≤ N) can also be derived us-
ing backward induction, which starts from VN = E(XN)
as the transfer must be done by time slot N regardless
the cost. Then, the rest of E(Vt) can be computed using
the user profile, which reveals various statistics of Xt such
as P (Xt ≤ E(Vt+1)) and E(Xt|Xt ≤ E(Vt+1)). We pre-
compute all E(Vt) (1 ≤ t ≤ N) using Eq. (4), and refer to it
as the threshold table. Upon optimum E(Vt) (1 ≤ t ≤ N) are
derived, the proposed scheduler computes optimal schedule
using Eq. (3). Compared the OSS algorithm, the OSSL al-
gorithm employs a simpler underneath model. Hence, OSSL

can be trained with shorter user profiles, at the expense of
potentially higher inaccuracy.

4. TRACE-DRIVEN SIMULATION

4.1 Simulation Setup
For fair comparisons, we adopt a set of 3-month long

traces collected from 12 North American Android users, who
are heterogeneous in terms of demography, sex, and age.
The traces were collected and used in another project [11],
and we process the raw trace files to extract the relevant
measurements: Received Signal Strength Indication (RSSI),
and upload/download throughput. A higher value in RSSI
or throughput reduces the transmission time of data, in turn
reduces network resource and battery consumption. In the
current work, we only consider data collected from the cel-
lular network; data from WiFi is excluded. The resulting
traces are used to drive the simulator.

The simulator is developed in Matlab and run on a Linux
PC with a 2.8 GHz Intel CPU. The simulator implements
a time slotted system. Contents arrive to the system fol-
lows a Poisson process. Four algorithms are implemented to
schedule the content transfers. The first one is a baseline
algorithm Instant transfer (INS). INS schedules a content to

1 2 3 4 5 6 7 8 9 10 11 12

1

5

10

15

20

25

User

N
o
r.

T
h
ro

u
g
h
p
u
t

(T
im

es
)

IN S
OSS
OSSL

OP T

(a)

1 2 3 4 5 6 7 8 9 10 11 12

−100

−80

−60

−40

−20

0

User

R
S
S
I

(d
B

m
)

IN S
OSS
OSSL

OP T

(b)

1 2 3 4 5 6 7 8 9 10 11 12
0

2

4

6

8

10

User

D
el

a
y

(h
rs

)

IN S
OSS
OSSL

OP T

(c)

Figure 3: (a) Normalized throughput achieved by the scheduling algorithms, (b) signal strength achieved by
the scheduling algorithms, and (c) delay due to the scheduling algorithms, INS leads to no delay.

transfer right after it becomes available. The second algo-
rithm is the OSS algorithm introduced in Section 3.2. Part
of the traces are passed to OSS algorithm as user profile.
With user profile, OSS generates a decision table for each
user. After a content becomes available, each time slot, the
current optimization criteria, either RSSI or upload through-
put, and current time is used to look up the decision table
and find the current action (Transfer or Wait). The third
algorithm is the OSSL algorithm presented in Section 3.3.
OSSL also employs traces as user profile, however OSSL gen-
erates a threshold for each time slot using a simplified model.
Each time slot, OSSL compares the current optimization cri-
teria with the corresponding threshold. OSSL transfer the
content if the current value is better than the threshold.
Finally, an offline algorithm OPT is implemented as an up-
per bound for scheduling algorithms. We assume that OPT
knows all the future RSSI or throughput at the beginning.
After each content becomes available, OPT will choose the
time slot with the highest RSSI or throughput to transfer
the content, which is of course not realistic.

If not otherwise specified, we let the user profile be half
of the trace length, time horizon be 8 hours, use the up-
load throughput as the optimization criterion, and schedule
on average 32 content transfers per day. We also study the
implications of varying user profile length and time hori-
zon. Each content is scheduled by all four algorithms, the
resulting RSSI or throughput, along with incurred delay are
collected. The decision table or threshold table size and the
time taken to generate these tables are also collected.

4.2 Simulation Results
We first report the simulation results with default param-

eters. We then study the implications of the parameters. We
also present computation time and memory consumption of
the proposed algorithms.

Throughput optimized scheduling. We use the re-
sults from INS as the baseline, and compute the relative
upload throughput of the proposed algorithms. We plot the
throughput results in Fig. 3(a). This figure shows that the
proposed OSS and OSSL algorithms always outperform the
INS algorithm, and in the extreme case by up to 17 times.
This demonstrate the benefits of the proposed algorithms.

Signal strength optimized scheduling. We plot the
RSSI values in Fig. 3(b). This figure reveals that the Smart-
Transfer framework supports various optimization criteria.
Moreover, the proposed OSS and OSSL algorithms outper-

form the INS algorithm for most users, except for users 5,
10, and 12, in which the RSSI values resulting from the OSS
and OSSL may be slightly worse than that of the INS algo-
rithm. We took a closer look at the traces, and found that
these users tend to spend a very long time, e.g., a day, at a
single location. Therefore, their RSSI values over each day
are rather static, and thus our proposed algorithms may not
result in too much improvement. We also plot the delay of
content transfers in Fig. 3(c).

Implications of profile length. For individual users,
we plot the average upload throughput achieved by each
algorithm under various profile lengths, between 1 and 32
days. The figures are not shown due to the space limitations.
We found that the OSS and OSSL significantly outperform
the INS algorithm. Moreover, the resulting throughput is
generally higher with longer profile length. Next, we report
the overhead of the proposed algorithms. The decision ta-
ble of the OSS algorithm contains 15256 elements, while the
threshold table of the OSSL algorithm only has 4920 ele-
ments. As a consequence, the OSSL algorithm runs much
faster than OSS: less than 200 msecs versus up to 44 secs.
This shows that OSSL is preferable when the computational
resources are scarce.

Implications of time horizon. Fig. 4 reports the sam-
ple results from user 3 with various time horizons. Fig. 4(a)
indicates that the OSS algorithm outperforms the OSSL al-
gorithm when the time horizon is shorter than 12.5 hrs, while
the OSSL performs better when time horizon is longer. This
means that OSSL is more suitable to content transfers that
are tolerant to longer delays. Fig. 4(b) plots the running
time of the two algorithms. We make two observations.
First, the OSS algorithm does not scale well with the time
horizon, the running time is 100 secs when time horizon is
32 hrs. Second, the OSSL algorithm runs efficiently, at most
560 msecs running time is observed (not visible in this fig-
ure due to the Y-axis scale). Figs. 4(a) and 4(b) show that
OSSL is preferable when time horizon is large.

5. REAL IMPLEMENTATION AND EX-

PERIMENTS

5.1 SmartTransfer on Android
SmartTransfer can be implemented entirely as a user-

space library. However we choose to integrate it into An-
droid framework, so all Android applications can readily use

0 5 10 15 20 25 30 35 40
0

20
40
60
80

100
120
140
160
180
200

Time Horizon (hrs)

T
h
ro

u
g
h
p
u
t

(k
b
p
s)

IN S
OSS
OSSL

OP T

(a)

0 5 10 15 20 25 30 35 40
0

20

40

60

80

100

Time Horizon (hrs)

R
u
n
n
in

g
T

im
e

(s
ec

s)

OSS
OSSL

(b)

0 20 40 60 80 100 120
−90
−80
−70
−60

0 20 40 60 80 100 120

−100

−50

R
S

S
I

(d
B

m
)

Current RSSI

Threshold

0 20 40 60 80 100 120
−90

−80

−70

Time Slot

(c)

Figure 4: (a) Implications of the time horizon on throughput, (b) OSS does not scale to longer time horizon,
and (c) sample scheduling decisions from the real experiments.

our content transfer service without reinventing the wheel.
We have patched the Android 2.2 source tree of the Android
Open Source Project (AOSP) with the proposed Smart-
Transfer framework. The SmartTransfer framework is re-
alized as a service on Android. As a proof-of-concept, our
current implementation supports the OSSL algorithm; we
are integrating the OSS algorithm into it. We collect user
profiles in the background with a time slot of 30 seconds.
The user profiles, up to 60 days, are used to generate the
threshold table whenever the phone is being charged. Once
there exists a pending content transfer request, we use the
pre-computed threshold table to pick the best time for data
transfer.

5.2 Application: VideoBlogger
We have implemented a sample Android application,

called VideoBlogger, which emulates a smartphone user who
regularly records videos and uploads them to a web site
using the SmartTransfer API over the 3G network. The
VideoBlogger generates realistic video uploads as follows.
We develop a crawler to retrieve the metadata of YouTube
videos. We use the crawler to get the sizes of 500 ran-
dom videos, and built an empirical Cumulative Distribution
Function (CDF). The VideoBlogger periodically generates
video uploads with the sizes following this CDF, and em-
ploys a Poisson process with a mean of 10 minutes to deter-
mine the inter-arrival time of video uploads. Poisson pro-
cess is often used to describe nature events in the real world.
After each video update, the VideoBlogger sends the mea-
surement results, including the start/end time, video size,
and network throughput, to a backend ftp server. We run
both the web and ftp servers on a Windows PC connected
to the Internet over a Gigabit Ethernet link.

The VideoBlogger is implemented for large-scale experi-
ments. It is implemented as a background service on An-
droid, and has been deployed to experimental subjects over
the Android Market since late February 2012. The recurring
video uploads allow us to collect statistically-meaningful re-
sults without any subject intervention. We name all the log
files using an one-way hash function of the mobile device
IDs (IMEI numbers) to maintain subjects’ privacy. We de-
ployed VideoBlogger to subjects of diverse occupations, age,
sex, and even in different time-zone. By choosing heteroge-
neous subjects, we show that the SmartTransfer automati-
cally adapts to different users.

5.3 Preliminary Experimental Results
Due to the time and space limitations, we only report

preliminary results in this section. Fig. 4(c) shows sample
transfers from three subjects chosen from a total of 12 sub-
jects. The solid lines show the RSSI values measured during
the experiment, and the dashed lines show the thresholds
generated by OSSL. The first time RSSI falls below the cur-
rent threshold, OSSL will transfer the content. Using the ex-
periments, we demonstrate the practicality of the proposed
solution.

6. RELATED WORK
The idea of leveraging delay tolerant content transfer has

been studied in the literature. For example, Hao et al. [8]
proposed to selectively postpone less critical user-generated
multimedia uploads to save energy on mobile devices. Their
smartphone application first uploads the geographical meta-
data of each video at the capture time, and only uploads the
video itself when there are explicit interests from other users.
Their work in [8] is complementary to ours, as they consider
on-demand user requests, while we concentrate on content
transfer scheduling. In [17], the authors proposed to add
drop zones for efficiently offloading upload traffic. In [4],
the authors used WiFi network whenever possible to offload
data from 3G connections, which is achieved by analyzing
recent WiFi availability to predict the future availability.
Schulman et al. [15] used location service to derive the user
paths, which are then leveraged to predict future network
condition. In comparison to [17], our solution does not re-
quire additional network infrastructure. On the other hand,
in [4, 15], short history (e.g., last several measurements in
a few minutes) is used to predict future network condition,
which is valid for a short time scale, say minutes. In com-
parison, we have used much larger time-scale history profile,
which enables us to provide longer time scale prediction,
say in the time horizon of one hour. Because of the large
time scale, we cannot use simple average to estimate future
time condition, this ”non-stationarity” introduces technical
challenges which are addressed in this paper.

A different approach of capitalizing delay tolerant content
transfers is to batch several requests together. Balasubra-
manian et al. [5] proposed a heuristic batching algorithm,
based on the measurements of tail energy in the various net-
works. Kononen and Paakkonen [10] tackled the tail be-
havior of networks using a timer alignment technique. Qian

et al. [12] proposed to optimize the UMTS radio resource
management state machine in order to balance energy sav-
ing and performance. We are working on including batching
into the proposed opportunistic scheduling algorithms.

7. CONCLUSION AND FUTURE WORK
We propose SmartTransfer framework and two scheduling

algorithms to intelligently schedule delay tolerant data to
more favorable network conditions in order to potentially re-
duce network resource consumption, alleviate network con-
gestion, and improve battery lifetime. In this preliminary
work, we show that user network profile is an indispensable
component to accurately predict future network condition,
which is crucial for efficiently leveraging delay tolerance to
save network resource. Our proposed solution is simple yet
effective, and can be implemented on mobile platforms. We
have discussed in details the implementation of SmartTrans-
fer, as well as its practical applications. Using both real
traces and experimental study, we have demonstrated the
desirability of the proposed SmartTransfer.

We are extending the current study in several directions.
First, we will consider the scenario where multiple transmis-
sions with various sizes. Some of the transmissions could be
combined/batched. The main benefit of batching is to re-
duce overhead induced by network setup, link setup, and
tail effect of network interfaces. Second, we would like to
further investigate machine learning technique to achieve a
good balance between model complexity and profile data
availability. We would like to also study the benefit of non-
parametric learning. Furthermore, our proposed solution,
in principle, can be used to alleviate network congestion,
i.e., using the congestion level as the cost. The main chal-
lenge in studying network congestion alleviation is to achieve
a good estimate of network congestion without imposing
heavy probing overhead on both the device and the network.

8. ACKNOWLEDGEMENTS
This work is supported by HTC Magic Labs. C. Hsu and

T. Lin are partially supported by National Science Council
(NSC) of Taiwan (#100-2218-E-007-015-MY2).

9. REFERENCES
[1] Cisco visual networking index: Forecast and

methodology, 2010–2015. http://www.cisco.com/en/
US/solutions/collateral/ns341/ns525/ns537/

ns705/ns827/white_paper_c11-481360.pdf, 2011.

[2] Why Verizon dropped its unlimited data plan (and
what you can do about it).
http://moneyland.time.com/2011/06/23/

why-verizon-dropped-its-unlimited-data-plan/,
2011.

[3] M. Albanese, A. d’Acierno, V. Moscato, F. Persia, and
A. Picariello. A ranking method for multimedia
recommenders. In Proc. of ACM International
Conference on Image and Video Retrieval (CIVR’10),
pages 311–318, Xian, China, 2010.

[4] A. Balasubramanian, R. Mahajan, and
A. Venkataramani. Augmenting mobile 3G using
WiFi. In Proc. of ACM International Conference on
Mobile Systems, Applications, and Services
(MobiSys’10), pages 209–222, San Francisco, CA,
2010.

[5] N. Balasubramanian, A. Balasubramanian, and
A. Venkataramani. Energy consumption in mobile
phones: A measurement study and implications for
network applications. In Proc. of ACM SIGCOMM
Conference on Internet Measurement (IMC’09), pages
280–293, Chicago, IL, 2009.

[6] J. P. Gilbert and F. Mosteller. Recognizing the
Maximum of a Sequence. Journal of the American
Statistical Association, 61(313):35–73, 1966.

[7] M. C. Gonzalez, C. A. Hidalgo, and A.-L. Barabasi.
Understanding individual human mobility patterns.
Nature, 453(7196):779–782, 2008.

[8] J. Hao, S. Kim, S. Ay, and R. Zimmermann.
Energy-efficient mobile video management using
smartphones. In Proc. of ACM Conference on
Multimedia Systems (MMSys’11), pages 11–22, San
Jose, CA, 2011.

[9] C. Joe-Wong, S. Ha, and M. Chiang. Time-dependent
broadband pricing: Feasibility and benefits. In Proc.
of IEEE International Conference on Distributed
Computing Systems (ICDCS’11), pages 288–298,
Minneapolis, MN, 2011.

[10] V. KoÌ́LnoÌ́Lnen and P. Paakkonen. Optimizing power
consumption of always-on applications based on timer
alignment. In Proc. of International Conference on
Communication Systems and Networks
(COMSNETS’11), pages 1–8, Bangalore, India, 2011.

[11] S. Nirjon, A. Nicoara, C. Hsu, J. Singh, and
J. Stankovic. MultiNets: Policy oriented real-time
switching of wireless interfaces on mobile devices. In
Proc. of IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS’12), Beijing,
China, 2012.

[12] F. Qian, Z. Wang, A. Gerber, and Z. Mao.
Characterizing radio resource allocation for 3G
networks. pages 137–150, 2010.

[13] M. Ra, J. Paek, A. Sharma, R. Govindan, M. Krieger,
and M. Neely. Energy-delay tradeoffs in smartphone
applications. In Proc. of ACM International
Conference on Mobile Systems, Applications, and
Services (MobiSys’10), pages 255–270, San Francisco,
CA, 2010.

[14] E. Samuel-Cahn. Optimal Stopping With Random
Horizon With Application to the Full-Information
Best-Choice Problem With Random Freeze. Journal of
the American Statistical Association, 91(433):357–364,
1996.

[15] A. Schulman, V. Navda, R. Ramjee, N. Spring,
P. Deshpande, C. Grunewald, K. Jain, and
V. Padmanabhan. Bartendr: A practical approach to
energy-aware cellular data scheduling. In Proc. of
ACM Annual International Conference on Mobile
Computing and Networking (MobiCom’10), pages
85–96, Chicago, IL, 2010.

[16] C. Song, Z. Qu, N. Blumm, and A.-L. BarabÃa֒si.
Limits of predictability in human mobility. Science,
327(5968):1018–1021, 2010.

[17] I. Trestian, S. Ranjan, A. Kuzmanovic, and A. Nucci.
Taming user-generated content in mobile networks via
drop zones. In Proc. of IEEE INFOCOM’11, pages
2040–2048, Shanghai, China, 2011.

