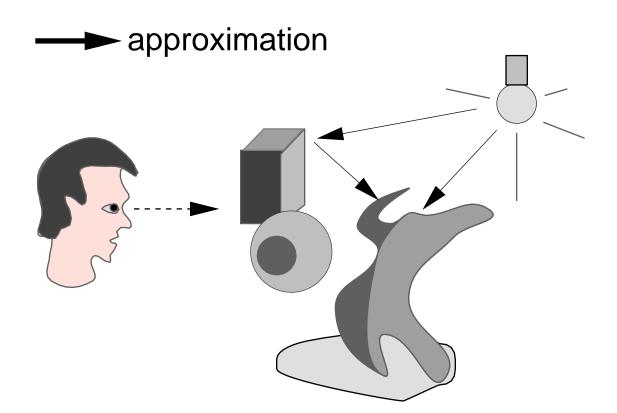
Shading

- 1. Light sources
- 2. Basic illuminication models
- 3. Phong shading
- 4. Polygon shading
- 5. Global illumination (later)


Photorealistic rendering

- accurate graphical representations of objects
- 2. good physical descriptions of the lighting effects in a scene

Lighting effects:

- light reflection
- transparency
- surface texture
- shadows

Modeling the colors and lighting effects that we see on an object is a complex process

Light sources

Sun, light bulbs, and any other light-emitting sources

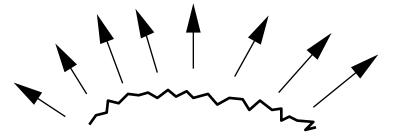
How about light-reflected sources?

Point light sources

- emits light equally in all directions

$$I(p,p_0) = \frac{1}{|p-p_0|^2} I(p_0)$$

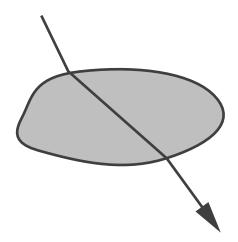
Spotlights


a narrow range of angles through which light is emitted

Distant light sources

- parallel light
- sun

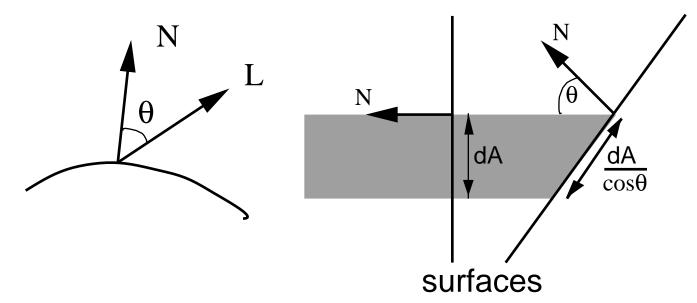
Surface types


- Rough, grainy surfaces tend to scatter light

- Glossy, shiny surfaces result in highlighting effect

- Transparent surfaces can transmit light

Basic illumination models

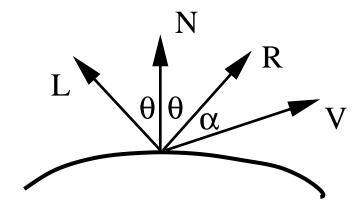

- 1. Ambient light
- 2. Diffuse reflection
- 3. Specular reflection

Ambient light

- model the combination of light reflections from surrounding objects in the scene
- no spatial or directional characteristics
- background light
- account for all the complex ways in which light can reach an object that are not addressed in the other parts of the illumination equation
- $I = k_a I_a \quad \text{where } I \text{ is the intensity of the ambient light, and } k_a \text{ (the } \textit{ambient reflection coefficient} \text{) is the percentage of ambient light reflected from the object's surface}$

Diffuse reflection (Lambertain reflection)

- Dull, matte surfaces
- Surfaces appear equally bright from all viewing angles since they reflect light with equal intensity in all directions
- Brightness depends only on the angle θ between the light direction L and the surface normal N.



$$I = I_d \text{ kd } \cos\theta = I_d \text{ kd } (N \cdot L)$$

$$I = I_a k_a + I_d k_d (N \cdot L)$$

Specular reflection

- on any shiny surface
- appear white, the color of the incident light
- reflect light unequally in different directions
- on a perfectly shiny surface, light is relfected only in the mirrowed direction of L about N.

 $I = I_s \; k_s \; \left(R \bullet V\right)^n \quad \text{where n makes the specular} \\ \quad \text{highlight rapidly fall off}$

$$I = I_a k_a + I_d k_d (N \cdot L) + I_s k_s (R \cdot V)^n$$

This is the Phong shading model!!