Simplified Master Theorem

A recurrence relation of the following form:

\[T(n) = \begin{cases}
 c & n < c_1 \\
 aT(n/b) + \Theta(n^i), & n \geq c_1
\end{cases} \]

Has as its solution:

1) If \(a > b^i \) then \(T(n) = \Theta(n^\log_b a) \) (Work is increasing as we go down the tree, so this is the number of leaves in the recursion tree).

2) If \(a = b^i \) then \(T(n) = \Theta(n^i \log_b n) \) (Work is the same at each level of the tree, so the work is the height, \(\log_b n \), times work/level).

3) If \(a < b^i \) then \(T(n) = \Theta(n^i) \) (Work is going down as we go down the tree, so dominated by the initial work at the root).