Lecture 18: 6/2/2009

Announcements: On MyUCD: Ps8, Ps9 solutions, Sample final
FINAL EXAM: NOTE ROOM CHANGE Monday June 8, 10:30-12:30 6 Olson, Open Book, 1 double sided sheet of paper for notes.

OH shifts: Me, 12-1 this Thursday (instead of 1-2)
Nick: 2-4 Friday (after the review session)

Review Session: Friday 12:10-2, 146 Olson

Today: o Students evaluate Me and TA’s // 10 mins

o Graph theory
 o Hints for the final,

Graph theory

1. Notion of a graph

Def: A (finite, simple) Graph G=(V,E) is an ordered pair
 - where V is a nonempty finite set (the "vertices" or "nodes")
 - where E is a collection of two-elements subsets of V (the "edges")
No Parallel edges (at most one edge \{a,b\}). If we allow them G is a multi-graph
No self loops (edge \{a,a\})
G is an Undirected graph:

Graphs are used to represent all sorts of things: we already saw for functions and relations, Finite State Machines, and recursion trees, but also for networks (vertices are computers/routers, edges are communication lines); road networks (cities/intersections, highways/streets); friendships (people, relationship), call graphs (functions, who calls who), many, many more …

Conventional representation: picture.
Be clear: the picture is NOT the graph, it is a representation of the graph.
are the SAME graph.

Def: Two vertices \(v, w \) of a graph \(G=(V,E) \) are **adjacent** if \(\{v,w\} \in E \).

Def: The **degree** of a vertex \(d(v) = |\{v,w\} : w \in V| \)

I like \(\{x,y\} \) for an edge, emphasizing that \(\{x,y\} \) are unordered. Will sometimes see \(xy \) or \((x,y) \), but both "look" like the order matters, which it does not here (used for directed graphs).

Usually write \(n=|V|, m=|E| \)

2. Paths in graphs

\[\text{Def: A path } P=(v_1, \ldots, v_n) \text{ in } G=(V,E) \text{ is a sequence of vertices s.t.} \]
\[\{v_i,v_{i+1}\} \in E \]
\[\text{for all } i \text{ in } \{1,\ldots, n-1\}. \text{ Note: we exclude the trivial path } a-b-a \text{ that repeats the same edge twice.} \]

A path is said to **contain** the vertices and to **contain** the edges \(\{v_i,v_{i+1}\} \). The **length** of a path is the number of edges on it.

A **cycle** is a path of length 3 or more that starts and stops at the same vertex and includes no repeated vertices apart from the first vertex being the last.

A graph is **acyclic** if it contains no cycle.

A graph \(G=(V,E) \) is **connected** if, for all \(x,y \) in \(V \), there is a path from \(x \) to \(y \).
3. Trees

Def: A _**tree**_ is a connected acyclic graph.
Def: A _**leaf**_ (of a tree) is a vertex of degree one (or zero if G has only one node).

Picture.

Thm1: Any tree has at least one leaf:

Proof: start at some vertex \(v \) in G. If \(\text{deg}(v) = 1 \) or zero, then done, otherwise, let \(w \) be adjacent to \(v \), again if \(w \) is a leaf, done, otherwise it has degree at least 2, so has an adjacent node say \(x \) different from \(v \). Repeat this argument until you get to a leaf. Since there is no cycle you must eventually get to a vertex that has no additional neighbor, and is thus a leaf.

4. Eulerian and Hamiltonian graphs

.............................

Def: A graph G is _**Eulerian**_ if it there is a cycle C in G that goes through every edge exactly once.

A graph G is _**Hamiltonian**_ if there is a cycle that goes through every vertex exactly once.

Theorem: (Euler) A connected graph G=(V,E) on \(\geq 3 \) vertices is Eulerian

Iff every vertex of G is of even degree.

Proof: \(\rightarrow \) Choose some \(s \). A Graph is Eulerian means there is a path that starts at \(s \) and eventually ends at \(s \), hitting every edge (once). Put a label of 0 on every vertex. Now, follow the path. Every time we enter a vertex or exit a vertex, we increment the label. At end of traversing the graph, label(v) = degree(v) and this is even.

\(\leftarrow \) (sketch) If every vertex is of even degree, at least three vertices. Start at \(s \) and grow a cycle C of unexplored edges until you wind up back at \(s \). You never "get stuck" by even-degree constraint. If every edge explored:Done. Otherwise, find contact point of C and an unexplored edge (exists by connectedness) and grow out from there. Splice together the paths.
So there is a trivial algorithm to decide if G is Eulerian: just check if all its vertices are of even degree.

Amazing fact: There is no efficient algorithm known to decide if a graph is Hamiltonian. Easy to do so using a slow algorithm: try all $n!$ orderings of the vertices. (Most computer scientists believe that no such algorithm exists.)

5. Longest and shortest paths

Def: A _shortest path_ between two vertices x and y is a path from x to y such that there is no shorter (=fewer edges) path from x to y. (more general versions put distances on edges and then we want the path with the smallest sum of distances).

A _longest path_ between two vertices x and y is a _simple path_ (=no repeated vertices) from x to y.

Claim: There is an efficient algorithm to identify a shortest path between two designated vertices in a graph. (You will learn one in ecs122A and probably ecs60)

Amazing fact: There is no efficient algorithm known to find a longest path from x to y. (Most computer scientists believe that no such algorithm exists.)

6. Colorability

.................

Def: A graph $G = (V,E)$ is *k-colorable* if we can paint the vertices using "colors" $\{1, ..., k\}$ such that no adjacent vertices have the same color.

Def: A graph is bipartite if it is 2-colorable. In other words, we can partition V into (V_1, V_2) such that all edges go between a vertex in V_1 and a vertex in V_2.

Proposition: There is a simple and efficient algorithm to decide if a graph G is 2-colorable. **Proofs:** Modify DFS. Or show ad hoc algorithm directly...

Amazing fact: There is no reasonable algorithm known to decide if a graph is 3-colorable.

(Most computer scientists believe that no such algorithm exists.)