Problem Set 7 – Due Monday, May 19, 2009, 3:15

1. For each definition below is it a function?, and give its range.
 a) \(f(x) = x^2 \), the domain and co-domain of \(f \) are the reals.
 b) \(g(x) = \lceil x \rceil \), the domain and co-domain of \(g \) is the reals.
 c) \(h(x) = x^{-5} \), the domain and co-domain of \(h \) are the reals.
 d) \(f \circ g (x) \)

2. Prove that a function \(f : A \leftarrow B \) is invertible iff \(f \) is 1-1 and onto.

3. Suppose \(f(x) = \Theta(n^3) \) and \(g(x) = O(n^2) \) What can we say about the following in terms of big O and \(\Theta \) terms?
 a) \(f(x) \times g(x) \)
 b) \(f(x) + g(x) \)
 c) \(f \circ g (x) \)

4. Show that the function \(\text{Fibo}(n) \), which returns the \(nth \) fibonacci number, is in \(O(2^n) \). Hint, use induction.

5. We proved that the positive integers were equinumerous with all integers (and with the rationals). Now let \(A \) be the odd positive integers. Show that \(A \) is equinumerous with \(\mathbb{N} \), and thus that \(A \) is equinumerous with \(\mathbb{Q} \).