1 Introduction

The shortest augmenting path flow algorithm repeatedly finds a shortest augmenting path (A-path) in the residual graph G_f. A simple approach uses BFS to find these shortest paths. Below we describe an incremental approach which does not require redoing everything from scratch each time.

We use distance labels $d(v)$ which are lower bounds on the number of arcs from v to t on a shortest path. The basic properties we use are that:

- $d(t) = 0$
- $d(u) \leq d(v) + 1$ if $(u, v) \in G_f$.

Initialization

We can use a BFS from t in the reverse graph of G_f to compute each vertex’s true distance from t initially. Or we can simply set all $d()$ values to zero (both work, but the BFS will usually make the algorithm faster).

2 Algorithm

The high level idea is to start at s and look for an A-path of length $d(s)$: this would mean going successively to vertices of distance label $d(s) - 1, d(s) - 2, \ldots, 0$. We also record for each vertex a value $\text{pred}(v)$ which is the vertex we reached v from in our current A-path (this allows us to backup both to find the eventual path, and to backtrack).

Basic routines:

Relabel(u)

- if u has no neighbors in G_f, $d(u) \leftarrow n$
- else, $d(u) \leftarrow k + 1$ where k is the minimum $d()$ value of a neighbor of u in G_f.

Advance(v) // moves towards t till gets stuck, or hits t

$cv \leftarrow v$;

While ($\exists u$ with $((cv, u) \in G_f)$ AND ($d(u) = d(cv) - 1$))

{ $\text{pred}(u) \leftarrow v$;
 $cv \leftarrow u$; // move to next vertex in path, u
}

return(cv); // return last vertex reached

Findpath() // Looks for an A-path, success if hits t, fail if backup to s

last \leftarrow Advance(s); // move forward from s till get stuck at last

While (last $\neq s, t$) // stuck partway, so backup

{ $v \leftarrow \text{pred}(\text{last})$;
 relabel(last); // can’t move forward from last, so needs relabel
 last \leftarrow Advance(v); // continue looking from v
}

If (last $= t$) return(1) else return(0);

Main

Start with any legal flow f. Create G_f and set initial $d()$ values.

While ($d(s) < n$) // if ($d(s) \geq n$) no A-path exists.

If (Findpath()) // Looks for an A-path
Update G_f using $s \leftarrow t$ path found
Else Relabel(s); // no path from s of length $d(s)$ so relabel.

3 Analysis

Labels are always greater than zero, no more than n, and always go up. Thus there at most n relabel operations per vertex. Each relabel operation takes time $O(\text{degree}(v))$, so relabeling each vertex once takes $O(m)$. Thus all
relabel operations take \(O(mn) \) for the entire algorithm. More generally, if we can bound the maximum \(d() \) value of a node to be some \(r < n \), than the total work for relabels is \(O(rm) \).

Most of the other real work takes place in Advance. To find a vertex \(u \) such that \(v, u \in G_f \) and \(d(u) = d(v) - 1 \) we have to scan the adjacency list of \(v \) (for the graph representing \(G_f \)). As we noted in class, we keep track of our current position in each adjacency list, so when we start a new scan, we don’t revisit old vertices on the adjacency list (which all have the wrong \(d() \) value.). If we find an A-path with \(k \) vertices we can consider that the work associated with this path is \(O(k) \): to find the path (not counting bookkeeping work already counted in the \(O(mn) \) bound), augment, and update \(G_f \).

Each A-path kills off at least one critical arc \((v, u) \) which determines the path capacity. When removed from \(G_f \) we have \(d(v) = d(u) + 1 \). To use this arc on an A-path again, we must augment in the reverse direction first, so the \(d(u) \) value must go to at least \(d(v) + 1 \). For example, if when we first kill \((v, u) \) we have \(d(u) = 6, d(v) = 7 \), then we can augment on \((u, v) \) with \(d(u) = 8 \), finally to use \((v, u) \) again we must raise \(d(v) \) to 9.

In general, between uses of \((v, u) \) as a critical arc the distance labels must go up by at least 2. Thus each arc is critical at most \(n/2 \) times, and the total number of augmentation paths is thus at most \(mn \). With \(O(n) \) work per A-Path, we get an \(O(mn^2) \) general time bound.

Special cases: for unit graphs all arcs on an A-path are critical. Thus if an A-path has \(k \) arcs it takes \(O(k) \) work but kills \(k \) arcs. Thus the total work for Augmenting is \(O(mn) \), the total number of arcs killed over all augmenting paths. The total time for unit networks is then \(O(mn) \).

Note: a better algorithm (a variant of the shortest path algorithm) can improve this to \(O(mn^{2/3}) \).