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Figure 1: Motion distribution over 2 minutes, plotted at 4 fps. For one example clip, a) shows the real data distribution, b)
the distribution with our method, c-e) examples of excluding specific training objectives, and f) the distribution for a model

trained with a standard regression loss.

ABSTRACT

Applications for conversational virtual agents are on the rise, but
producing realistic non-verbal behavior for spoken utterances re-
mains an unsolved problem. We explore the use of a generative
adversarial training paradigm to map speech to 3D gesture motion.
We define the gesture generation problem as a series of smaller
sub-problems, including plausible gesture dynamics, realistic joint
configurations, and diverse and smooth motion. Each sub-problem
is monitored by separate adversaries. For the problem of enforcing
realistic gesture dynamics in our output, we train a classifier to
automatically detect gesture phases. We find adversarial training to
be superior to the use of a standard regression loss and discuss the
benefit of each of our training objectives. We recorded a dataset
of over 6 hours of natural, unrehearsed speech with high-quality
motion capture, as well as audio and video recording.
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1 INTRODUCTION

Interactive virtual agents are becoming increasingly common and
people may enjoy interacting with them more than even realis-
tic video-based characters [Kang et al. 2016]. However, they often
remain feeling stiff and unnatural. Non-verbal behavior plays an im-
portant role in making these agents more appealing, and co-speech
gestures specifically is a key component for increasing user engage-
ment [Salem et al. 2011]. Automatic generation of such gesturing
behavior for given utterances is appealing due to both cost-factors
and time constrained animation needs. Despite much research in
the area, automatically generating realistic gestural behavior re-
mains an open problem. One of the difficulties in modelling the
speech-to-gesture relation is the asynchronicity between the two
channels; gesture precedes or co-incides with speech but rarely
follows [McNeill 1992], making real-time prediction nearly impos-
sible. A second difficulty is the highly non-deterministic mapping
of speech to motion. Even the same speaker uttering the same
phrase will likely perform different gesture motions on each repe-
tition. Gestures may also communicate information not provided
explicitly through speech, providing complementary not redundant
information [De Ruiter et al. 2012; Melinger and Levelt 2004].

The non-deterministic mapping of speech to motion means for
one utterance, multiple variations of a gesture (or no gesture at
all) may be perceived as plausible by an observer. This presents a
difficulty in training a speech-to-gesture model; even a plausible
produced gesture may be penalized when it is numerically far from
the exact gesture found in the dataset for this utterance. A standard
regression loss in training a speech-to-gesture model is therefore
not ideal.

In this work, we apply two novel techniques for training a re-
current neural network (RNN) producing gesture motion based
on input speech. Firstly, we train a speech-input-motion-output
RNN with a generative adversarial paradigm instead of a standard
regression loss, and we specifically use multiple adversaries instead
of a single one. Secondly, we aim to enforce a realistic gesture
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phase structure by training one discriminator network to distin-
guish between real and generated motion based purely on its phase
structure. As discussed in Section 2, natural gesture can be divided
into distinct phases: preparation, stroke, hold, and retraction. We
automatically extract the phase structure of real and generated mo-
tion with a phase classifier that we designed and trained specifically
for this purpose.

Our multi-discriminator design allows the gesture generation
problem to be defined with multiple smaller sub-problems. We
discuss how each of our discriminator objectives improves the final
result.

We will first introduce the phase classifier in Section 4, before
discussing the speech-to-gesture model in Section 5.2 and its ad-
versarial training in Section 7.1.

2 RELATED WORK

Gesture generation Various methods have been proposed
for generating gesture from speech. Some approaches employ rule-
based systems that rely on explicitly defined text-to-gesture rules
[Cassell et al. 2001; Marsella et al. 2013; Thiebaux et al. 2008a].
Other works have used statistical modelling estimating conditional
probabilities for speech features co-occurring with motion features
[Bergmann and Kopp 2009a,b; Neff et al. 2008]. Various animation
systems have been developed to produce gesture motion, such as
SmartBody [Kallmann and Marsella 2005; Thiebaux et al. 2008b];
while is beyond the scope of this work to cover this area in detail,
recent surveys provide an overview (e.g. Neff [2016]).

Machine learning approaches have both been used in a fully
automatic manner without any need for hand annotating data
[Bozkurt et al. 2016; Chiu and Marsella 2011, 2014; Levine et al.
2010, 2009], as well as in conjunction with hand-labelled, higher-
level features such as gestural signs [Chiu and Marsella 2015].

Recent work has explored recurrent networks for speech-to-
gesture generation for English [Ferstl and McDonnell 2018] and
Japanese speech [Hasegawa 2018; Kucherenko et al. 2019]. Such a
network uses recurrent connections between network activations
at consecutive time-steps to model data with temporal dependen-
cies. Recurrent networks can, for example, capture the dynamics
of a motion pattern well and have been successfully employed for
human motion modelling tasks [Li et al. 2017; Pavllo et al. 2018].
However, recurrent networks trained with a standard error func-
tion tend to suffer from mean pose convergence, where longer term
motion sequences quickly regress to the average pose (such as in
Martinez et al. [2017] and Jain et al. [2015]). This may be due to
error accumulation when feeding generated output back into the
network [Holden et al. 2017], resulting in damped motion that may
look constrained and unrealistic. Generative adversarial networks
(GANSs) have been proposed as one alternative training paradigm.
Here, instead of minimizing a standard error function such as the
mean squared error of joint positions or angles, the model’s objec-
tive is to produce output that is qualitatively similar to real data,
as judged by another model, the discriminator, that is trained si-
multaneously in conjunction with the generator. GANs have been
successful in human motion modelling tasks [Barsoum et al. 2018;
Kundu et al. 2018], as well as in a speech-to-head motion generation
task [Sadoughi and Busso 2018].
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Very recent work proposed a convolutional network combining
a standard L1 regression loss with an adversarial discriminator for
predicting 2D gesture motion from speech [Ginosar et al. 2019].
The authors represent audio visually as a spectrogram, which is
then encoded by an audio encoder and subsequently processed by a
UNet translation architecture [Ronneberger et al. 2015]. The authors
created a large dataset of over 140 hours of 2D pose keypoints
extracted from YouTube videos of 10 speakers. (This work and
dataset was not yet available at the time of our work). The speakers
are professional performers, such as John Oliver (Last Week Tonight)
and Seth Meyers (Late Night with Seth Meyers), producing largely
rehearsed speech and generally producing a relatively small set
of clear gesture motions. Their speaker-specific models generate
sequences rated equally good as mismatched real gesture samples,
as measured by the rate it fooled human participants. The failure
to surpass random real motion is an indication of the difficulty of
the speech-to-gesture task. In our work, we focus on a different
type of gesture motion, namely spontaneous, conversational speech
gestures that appear more diverse and qualitatively different from
the distinct gestures usually seen for professional performers (refer
e.g. to John Oliver’s performances in Last Week Tonight).

Gesture phase Natural gesture behavior consists of phases
with qualitatively different dynamic characteristics [Kendon 1972]
and these phases occur in specific patterns [Kita et al. 1997]. In the
preparation phase, the hands are moved into position for the gesture.
The stroke has the most focused energy, it is an “accented movement”
with effort in the sense of Laban [Kita et al. 1997], and is the main
meaning carrying movement of the gesture. The retraction moves
the limbs back into a restful position (an incomplete retraction is
noted as a partial retraction). Holds are segments with zero velocity
and may occur before or after the stroke [Kita 1990]. All phases are
optional except the stroke.

We aim to capture these specific dynamic phases in our gesture
generation system. While these phases are present in any natural
gesture data, capturing the phase structure implicitly would require
a large dataset. Instead, we explicitly segment the phase structure
of gesture motion.

Segmenting gesture motion into its phases is non-trivial and in
many cases requires subjective judgment. Hence the labelling pro-
cess cannot be seen as deterministic and 100% accuracy is unlikely,
or even impossible. Different, automatic gesture phase annotation
methods have been proposed, including the use of support vector
machines [Madeo et al. 2016] and hidden Markov models [Alexan-
derson et al. 2016; Martell and Kroll 2007]. One limiting factor in
training phase models is obtaining labelled data; segmenting just
one minute of video into gesture phases may take one hour or
more of work (e.g. Neff et al. [2008]). Previous work has therefore
often focused on simpler sub-problems of detecting whether one
specific phase is occurring (e.g. detection only of gesture strokes),
or whether a gesture is being performed at all [Alexanderson et al.
2016; Bryll et al. 2001; Gebre et al. 2012].

3 DATASET

We recorded a high-quality dataset of natural speech and 3D mo-
tion specifically for the purpose of this work. We used a single
male actor for the complete recording. The actor is a native English
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speaker producing spontaneous conversational speech without in-
terruptions, i.e., without verbal cues from a conversation partner.
The actor was free to choose any topic in his speech but mostly cov-
ered personal stories and sports. We chose an actor with naturally
frequent gesturing behavior, but he was unaware of the purpose
of the recording. The actor addresses a person situated behind the
camera in order to give him the visual feedback of a conversation
partner. We recorded 25 takes, ranging between 10 and 20 minutes
each, totalling over 370 minutes (more than 6 hours) of data. The
actor’s motion was captured with a 59 marker setup and 20 Vicon
cameras at 120 fps (frames per second). Audio was recorded at 44
kHz. Video was captured with two cameras.

Figure 2: Capture setup and location of joints. The 16 red
markings indicate the joints used for the gesture phase
classification. The five yellow markings indicate the spinal
joints added to the joint set for gesture motion prediction.

3.1 Data Pre-pocessing

We processed the recorded speech with openSMILE [Eyben et al.
2013] to extract 26 Mel Frequency Cepstral Coefficients (MFCCs), as
well as the F0 (pitch) value. MFCCs are commonly used in speech
recognition tasks and the FO value as a prosodic feature carries
information about emphasis. Speech features were extracted with
a window size of 20 ms at steps of 0.01 ms, resulting in data of 100
fps.

We down-sampled the motion capture data from 120 to 100 fps
to match the speech features. We center and lock the root node of
the motion clips to the origin position with zero rotation and then
extract the absolute positional values of the captured joints. Our
actor remains fairly static in his lower body and we are therefore
able to capture most of his dynamics from the joints upward of the
locked root.

We normalize all speech and joint position features to zero mean
and unit variance. We train all models on 20 fps; in order not to
lose data, we take 20 fps data from 5 subsequent starting positions,
resulting in 5 sets of 20 fps data.

3.2 Gesture phase annotation

We annotated the phase structure of a subset of 226 minutes of the
complete dataset using the ANVIL annotation tool [Kipp 2001]. The
226 minutes were selected at random from the dataset. We aimed
to annotate as much of our dataset as possible while ensuring
annotation quality. For this purpose, we trained six annotators
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whose work was then repeatedly cross-checked at the start, before
each annotator was assigned separate data clips. We annotated nine
different gesture phases; (1) preparation, (2) stroke, (3) pre-hold,
(4) hold, (5) independent hold, (6) rest hold, (7) partial retract, (8)
retract, and (9) ‘none’. Table 1 shows the frequency of each phase
within the annotated data subset. Pre-hold and hold occur before
and after the gesture. Independent hold occurs when a gesture has
no stroke, but is defined by a held pose. Rest hold occurs when the
hands are held in a relaxed position without being fully retracted to
the sides of the body. None occurs when the arms are fully retracted
to the sides of the body and no gesture is being performed.

Table 1: Frequency of the 9 annotated phases in the total an-
notation set of 226 minutes.

Number of Percent of

Gesture phase .
occurrences  annotated time

Preparation 5775 19.1%
Pre-hold 979 3.2%
Stroke 8655 39.6%
Hold 5100 24.8%
Independent hold 94 0.8%
Rest hold 474 3.1%
Partial retract 1077 3.8%
Retract 409 1.3%
‘None’ 475 4.2%
Total 23038 -
speech ——

| real motion |
S———
Pl

hase classifier |+ 1

GAN

Figure 3: Overview of the system architecture. The generator
receives speech features and produces gesture motion. The
multi-discriminator GAN receives three different types of
input: (1) the speech features belonging to a motion segment,
(2) a motion segment (real or generated), and (3) the phase
structure of the motion segment (determined by the phase
classifier).

4 PHASE CLASSIFIER

Modelling gesture motion from speech directly is a hard problem.
As described in Section 1, the same phrase may be plausibly ac-
companied by many different gesture shapes. Speech features may
be more easily associated with the dynamics of gesture motion;
the kinematics of gestures (e.g., speed and acceleration) have been
shown to correlate with the prosodic features of speech [Valbonesi
et al. 2002]. However, implicitly inferring gesture dynamics from
raw positional data may be difficult and require a large amount
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of data. We therefore model these dynamics explicitly. Namely,
we extract gesture phases as higher-level representation of the
characteristic dynamics of gesture motion. This representation is
sufficiently low-dimensional (small set of different labels) to model
its structure from a relatively small dataset. We hand-annotated
the phase structure of 3.75 hours of data (as described in Section
3.2) and trained a classifier to detect gesture phases of a motion
sequence. Our objective is to use this phase classification to en-
force a realistic phase structure in the gesture generator’s output.
A classifier is necessary so that any new (un-annotated) motion
can be segmented into phases and judged for its structural realism.
After training the classifier on the annotated data subset, we never
use the true hand-annotated phase labels, we always use the phase
labels determined by the classifier and the full dataset. An overview
of the phase classifier’s role in the final architecture is shown in
Figure 3, and will be discussed in more detail in Section 7.1.

4.1 Method

The classifier assigns one phase label to each time-step of an input
sequence. For training the classifier, we reduce the annotated ges-
ture phase label set from nine to six classes by combining all types
of holds into one class. That is, we combine the labels ‘pre-hold’,
‘hold’, ‘independent hold” and ‘rest hold” into a super-class ‘hold’.
In effect, this simplifies the classification task by labelling all still
frame sequences (sections with close-to-zero joint velocities) as
one class, with the exception of the completely retracted ‘none’
position where the arms are relaxed by the side of the body. For the
adversarial training, we decide to further reduce the set of phase
labels to four classes: Preparation, holds (including pre-holds, in-
dependent holds, and rest-holds), strokes, and ‘other’. The ‘other’
class combines retracts, partial retracts, and ‘none’ annotations. We
choose this subset for the following reasons: first, we believe that
holds and strokes are the most important representatives of gesture
dynamics and their separation tends to get lost in standard training
of recurrent networks (mean pose convergence leading to damped
motion). Second, we separate the preparation phase due to its high
frequency and relevance in the gesture structure. Retracts are rela-
tively infrequent for our speaker, as is the ‘none’ phase (completely
retracted position); we decided to pool these classes together to
make for a higher confidence model and a more achievable task for
the gesture generator. The phase labels produced by the classifier
are used as pseudo ground-truth during adversarial training, and
we therefore need the classifier to be as confident as possible in its
decisions.

4.2 Network architecture and training

The classifier processes sequences of 5 seconds at a time, at 20 fps,
and assigns a phase label to each of the resulting 100 time-steps. As
input the classifier receives x, y and z velocities of 16 joints (total
of 48 values), corresponding to the shoulder, elbow, wrist, and each
fingertip, as well as the corresponding pitch value. The pitch value
captures information about speech emphasis and using a single
speech feature ensures that the motion input is not out-crowded.
Including pitch improves our classification scores (see Table 3); in
line with the finding that speech is associated with gesture phase
[Yunus et al. 2019]. The network consists of a two-layer recurrent
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network with an additional feed-forward layer for input processing.
The recurrent layers are Long Short Term Memory (LSTM) cells;
specifically, a unidirectional LSTM in the first recurrent layer, and
a bidirectional LSTM in the second recurrent layer. LSTM cells can
handle sequential data, such as time series data, and bidirectional
LSTMs specifically take both past and future data into account
for predicting a time step. We regularize the network by applying
dropout after each layer and batch normalization before the final
output. Dropout rates are empirically determined to provide good
performance without overfitting. The network details are visualized
in Figure 4. Of our total of 226 minutes of annotated data, we
separate 6.5 minutes of validation data by randomly selecting 13
start indices from which to take 30 seconds of data without overlap.
The remaining annotations serve as training data.

4.3 Results

The classifier reaches an overall weighted F-score of 0.76. The de-
tailed results can be seen in Table 2. The stroke and hold phases
reach the highest scores; this is likely due to both their distinct dy-
namics as well as their high frequency in the training set (see Table
1). Lower frequency phases with less distinct dynamics, such as
partial retracts, are more difficult to detect. Notably, the annotated
phase labels are only pseudo ground truth, as determined by an
annotator. We compare our results with the work of Madeo et al.
[2016], who employ a hierarchical strategy of single-class classi-
fiers, where e.g. a hold classifier first detects all holds, subsequently
a stroke classifier detects all strokes, etc. Their results represent
the best scores across multiple models rather than a single model
encompassing all gesture classes. That is, they trained combinations
of single-class classifiers and the here reported results represent the
highest scores for each class across combinations. For example, the
model achieving the score of 0.79 for detecting a preparation phase
is not the same model that achieves the score of 0.79 for stroke
detection.

We compare results for two classification models (4-class and
6-class), with and without speech pitch input. Table 3 shows the
F1 scores of the classification models trained without pitch input.
Comparing the results to the with-pitch models in Table 2, the
benefit of including pitch in the input to the classifier is more
obvious for the 6-class model, where all individual scores except
‘partial retract’ are improved by including pitch, as well as showing
an improvement of 0.03 in the overall weighted F1 score. For the
4-class model, the individual class scores improve (all except stroke)
or remain the same (stroke), but the weighted overall F1 remains
the same when including pitch as input.

5 GESTURE GENERATOR

The gesture generator is the core of the system and models the
speech-to-gesture translation. It receives speech features as input
and produces the positions of the 21 joints shown in Figure 2.

5.1 Generator architecture

The generator receives 27 speech features as input, composed of 26
MFCC values and the speech pitch (F0) value. The generator then
infers the x, y, and z positions of 21 joints, the hand, arm, and spine
joints depicted in Figure 2. The 27 speech features are passed to a
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Figure 4: The two detailed network configurations for our 4-
phase classifier and our 6-phase classifier. FF denotes a feed-
forward layer with linear activation. In brackets are denoted
the layer size or the dropout ratio. The 48 joint values refer
to the x, y, and z offsets of the 16 joints shown in Figure 2.

Table 2: Scores of phase classifier. Our ‘other’ class combines
the labels retract, partial retract, and none. The scores for
Madeo et al. [2016] denote the best scores reached across
multiple models.

Gesture phase F-score F-score F-score
4 classes 6 classes Madeo et al. [2016]
Preparation 0.64 0.65 0.79
Stroke 0.79 0.79 0.79
Hold 0.83 0.81 0.58
Partial retract - 0.47 -
Retract - 0.73 0.5
‘None’ - 0.75 -
‘Other’ 0.64 - -
Overall 0.76 0.76 -

Table 3: Scores of phase classifier without pitch input.

F-score F-score

Gesture phase 4 classes 6 classes

Preparation 0.63 0.64
Stroke 0.79 0.78
Hold 0.82 0.78
Partial retract - 0.49
Retract - 0.70
‘None’ - 0.56
‘Other’ 0.60 -

Overall 0.76 0.73

feed-forward layer with size 256 and relu activation followed by 30%
dropout during pre-training and 20% during adversarial training and
batch normalization. The input is propagated to a Gated Recurrent
Unit (GRU) of size 256 with a dropout of 50% during pre-training and
20% during adversarial training. A GRU is a variant of a recurrent
network cell with fewer parameters than an LSTM, allowing faster
training. The linear output layer of the generator produces the
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x, y and z position of 21 joints. The full generator architecture is
visualized in Figure 5. During pre-training (described in the below
Section 5.2), the dropout rate needs to be larger due to the fact
that the mean squared error function used in pre-training poses a
high probability of overfitting. The mean squared error gives the
generator direct feedback on how far the predicted pose is from the
ground truth. During later multi-adversarial training, the generator
receives less direct output feedback and is therefore less likely to be
able to overfit on the dataset. The adversarial loss merely tells the
generator the likelihood of the discriminator(s) finding its output
to be real data.

26 MFCCs + FO

[ %y, z of 21 joints (63 values) |

Figure 5: The generator network. The generator receives 27
prosodic speech features (26 MFCCs + F0) and produces the
xyz position of 21 joints. In brackets are denoted the layer
size or the dropout ratio; the larger dropout ratios apply to
pre-training.

5.2 Generator pre-training

During later adversarial training (Section 7.1), the generator will
receive feedback based on the phase structure of its motion output.
This phase structure will be determined by the phase classifier pre-
viously described in Section 4. This automatic phase classification
means that no matter what input, a phase label will be assigned
to each time-step. Data points diverging from a skeleton structure
and not resembling human motion may get assigned an indeter-
minable phase label. We do not want very unrealistic data to be
assigned a potentially realistic phase labelling. This could allow for
the following scenario: the generator generates effectively noise,
the classifier produces a realistic phase structure based on this, the
generator receives positive feedback for having produced motion
with a realistic phase structure. We therefore first ensure a quality
baseline of generator output that can reasonably be assigned phase
labels by the phase classifier. Hence, before adversarial training, we
initialize the generator to a baseline output resembling a skeleton
structure.

We pre-train the generator with a standard mean squared error
(MSE) loss of generated versus real motion:

T
MSE(mg,my) = = 3" (mg = my) 1)
t=1

MSE training allows for fast convergence towards a skeleton struc-
ture, but as expected, this training suffers from mean pose conver-
gence and produces only very damped motions around the average
joint positions. This is visualized in Figure 1 f), as well as in the
supplemental video. We use this model as the starting point for the
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adversarial training, and utilize the training history for pre-training
the phase discriminator as described in Section 6.1.

6 ADVERSARIES

In the most basic terms, the generator’s task is to fulfill two objec-
tives: To produce joint positions that resemble human motion, and
for this motion to be be appropriate with respect to the speech it
accompanies. While on a higher level we want the generator to
produce a realistic succession of gesture phases from speech, that
objective is not restrictive enough to generate realistic motion. We
discuss this step-by-step below.

6.1 Phase structure discriminator

The phase discriminator’s job is to determine whether the gen-
erator’s output follows a realistic gesture phase structure. This
discriminator therefore only receives phase labels as input rather
than joint positions. We additionally provide the phase discrimina-
tor with the pitch value at each time-step as an indicator of speech
emphasis. The network architecture of the phase discriminator is
detailed in Figure 6 a).

Phase labels are always determined by the phase classifier; that
is, we never use the ground truth annotation during adversarial
training. This ensures that any differences in the phase structure
of real and generated data is not due to potentially noisy automatic
classification. As the phase labels are automatically determined by
the phase classifier, we need to ensure somewhat sensible input to
the classifier, i.e. input resembling human motion. We utilize the
training history of the generator’s pre-training to prepare the phase
discriminator. The training history of the generator are the genera-
tor weights saved periodically during its pre-training described in
Section 5.2. The phase discriminator’s pre-training utilizes this as
follows: The phase discriminator receives the classified phase la-
belling of an untrained generator (i.e. noise input). When the phase
discriminator achieves an accuracy score of at least 70% for three

a) Input b)

FF (256, relu
Dropout (50%
LSTM unit (256)*

0/1 (sigmoid)

Input

0/1 (sigmoid)

* LSTM unit:

Phase discriminator:
Bidirectional, 40% dropout, 30% recurrent dropout

Motion discr. & displacement discr.:
Unidirectional, 40% dropout, 10% recurrent dropout

Figure 6: Network architecture of the adversaries. Left:
Phase, motion, and displacement discriminators. Right:
Minibatch discriminator. All discriminators apply input
transformation via a feed-forward layer. (The minibatch
layer applies Equation 2 before the input transformation.)
Dropout is applied subsequently, followed by a recurrent
unit (left) or another feed-forward transformation (right).
The output layer applies a sigmoid activation.
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batches in a row, the generator gets ‘upgraded’ with the next set of
weights from the training history. This is repeated until the phase
discriminator has reached the weights level of the fully pre-trained
generator. This step-by-step upgrading of the generator’s weights
serves to not overwhelm the discriminator during pre-training.

6.2 Motion realism discriminator

Adversarial training between the generator and the phase discrimi-
nator alone will quickly lead to divergence from the skeleton struc-
ture due to the phase discriminator only judging the automatically
classified phase labels. As described in Section 5.2, the phase classi-
fier may assign a realistic phase structure to unrealistic input; when
the generator is judged solely on this phase structure, it may receive
positive discriminator feedback for entirely unrealistic output and
increasingly diverge from producing skeleton-like joint positions.
To address this problem, we employ a second discriminator that
judges the output of the generator directly by receiving the pure
generated joint positions, as well as the corresponding audio fea-
tures. The 63 joint values (x, y, z of 21 joints) and 27 speech features
are passed into the network architecture detailed in Figure 6 a).

The motion realism discriminator is pre-trained in a classic ad-
versarial training setting with a new generator in order to learn to
detect unrealistic point clouds not resembling a skeleton. This is
necessary in order to not allow the already pre-trained generator
to regress to non-humanoid point clouds.

6.3 Minibatch discriminator

Adversarial training is prone to suffering from mode collapse, where
the generator produces repetitive patterns of output. While the
discriminator can immediately learn that this specific pattern comes
from the generator, the generator only needs to shift its repetitive
output slightly to fool the discriminator. This may be repeated in
an infinite cat and mouse game. One reason for this mode collapse
is that a standard discriminator only judges one output sequence
at a time, rather than in the context of a whole batch of data. A
minibatch layer can be added to allow the discriminator to see this
context and ensure that the generator cannot get away with even
novel patterns when they are repetitive throughout the data batch
[Salimans et al. 2016].

Instead of integrating minibatch discrimination into the motion
realism discriminator, we achieved better performance when out-
sourcing the task to a separate discriminator. This discriminator
receives 63 joint values (x,y,z of 21 joints) generated by the gen-
erator or taken from the ground truth and calculates a minibatch
similarity measure:

sim(X) = L'(W - X), (2

where L! denotes the L1 norm and W is a 300-dimensional (train-
able) weight tensor. The detailed architecture of the minibatch
discriminator is shown in Figure 6 b).

6.4 Displacement discriminator

The generator’s output at the beginning of adversarial training is
the damped motion learned from the MSE pre-training. To encour-
age the generator towards less damped motion, we introduce a
displacement discriminator that receives the same motion input as
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the phase classifier, namely the per-frame x, y, and z offset of the
16 arm joints (48 values). That is, the displacement discriminator
explicitly sees how much each joint has moved at each time-step;
it can penalize a generator that produces very slow (or very fast)
motion. The displacement discriminator also serves to reduce jitter
in the motion (offset in one direction always followed by some
offset to opposite direction).

The error from this discriminator receives a lesser weight and
serves as a minor side objective of the generator training, helping
to stabilize and speed up convergence and smooth output motion.
The architecture of the displacement discriminator follows that of
the motion realism discriminator and is visualized in Figure 6 a).

7 TRAINING PROCESS

During adversarial training, the generator’s output is judged by all
discriminators and an averaged error is computed, as detailed in
Section 7.1 below. This is followed by a training step of objective
numerical errors. The objective error functions speed up conver-
gence and enable continuous prediction, as described in Section
7.2.

7.1 Adversarial training

The adversarial training is visualized in Figure 7 and summarized
below:

o The generator receives 27 prosodic speech features as input
and generates corresponding 3D positions of 21 joints.

e The phase classifier first converts the joint positions to
frame offsets and subsequently predicts a sequence of gesture
phase labels. The phase classifier also receives as input the
FO (pitch) value of each frame. The classifier’s weights are
fixed during adversarial training.

o The produced phase label sequence of the classifier, plus the
F0 value, serve as input for the phase structure discrimi-
nator.

o The motion realism discriminator receives the joint positions
directly, as well as all corresponding 27 speech features.

e The displacement discriminator receives the same mo-
tion input as the phase classifier, the per-frame joint offsets
of the 16 arm and hand joints.

e The minibatch discriminator only receives the joint posi-
tions as input.

All three discriminators are trained with a binary cross-entropy
loss to determine whether a motion sequence is real or generated.
The loss of the generator with respect to the three discriminators
is weighted and combined into a single value for the generator’s
training step. All models work with input sequences of 5 seconds,
at 20 fps, resulting in 100 time-steps.

During adversarial training steps, the generator optimizes the
binary cross-entropy of the discriminators’ output. The generator’s
training error with respect to the four discriminators is averaged
for each optimization step in the following manner:

L6an(G) =
wp.E(G, Dp) +w, L(G,Dy) + win L(G, D) + wg L(G,Dy)
Wp + Wr + Wi + Wy ’

®)

with wp = 2, w, =4, wpy, =4, and wy = 1,
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where wy, is the weight assigned to the phase discriminator’s loss,
wy the weight for the motion realism discriminator, wy, the weight
for the minibatch discriminator, and w, the weight for the displace-
ment discriminator. £(G, D) represents the generator’s objective
with respect to one discriminator. The weighting of 2:4:4:1 was
chosen by empirically finding values that led to stable training
with respect to all discriminator objectives, without the generator
collapsing with respect to one or more objectives. The adversar-
ial training of the generator is visualized in Figure 7. We use the
RMSprop optimizer during adversarial training.

speech features
—_

only speech features
FO (26 MFCCs + FO)

m==m

generated motion
(x,y, Z joint positions)

I

phase labels
—_—

binary cross-entropy
R S ——"

real motion
{x,y,  joint positions)

¥
» Phase classifier |+

phase structure
(sequence of
phase labels)

________ e
L 2 1 y 3

Phase structure Motion realism Displacement Minibatch
discriminator discriminator discriminator discriminator
| | I I

Weighting
Adversarial loss

Figure 7: Adversarial training. The generator produces joint
positions based on input speech features. Its output is
judged by four discriminators with separate objectives, and
a weighted error is computed with respect to all four eval-
uations. Each discriminator optimizes the binary cross-
entropy objective, deciding if a given data sample is real or
generated.

7.2 Objective loss penalties

In addition to the adversarial updates of the generator, one MSE
correction is performed per two adversarial steps. The MSE avoids
major deviations of the generator’s output from a realistic skeleton
structure that would produce nonsensical phase label output and
slow down the training overall.

The generator is trained to predict gesture motion for 5 sec-
onds of speech input at a time rather than for continuous input.
Gesture motion can therefore be visibly discontinuous between
predictions. To avoid having to compute smooth transitions in
post-processing, we introduce a penalty for the generator for dis-
continuous sequences within a training batch. The discontinuation
penalty is computed as the mean squared distance between the
start position of a sequence and the end position of the preceding
sequence. The penalty for first sequence within a batch is always
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set to zero and otherwise:
T
Leont(©) = 2 (GO -G -1E . (@)
=1

We observed during adversarial training that the predicted finger
positions often move far from the hand. To speed up the training
process, we added a simple finger distance penalty restricting the
predictions to realistic ranges. We compute the distance of each
finger marker to the respective hand marker and calculate the MSE
with respect to the real distances:

Lfingers(©) = . D (D ingers 0D = Deingers VDP9

with Y(x) denoting the ground truth for sample x, and D¢ gers
computed as the concatenation of each finger marker’s x, y, and z
distance from the respective hand.

8 RESULTS

We conducted a series of evaluations to clarify the roles of each
discriminator and their benefits for generator training.

8.1 Phase structure discriminator

The phase structure discriminator allows us to capture important
gesture dynamics without having to rely on implicit learning from
a larger dataset (such as in Ginosar et al. [2019]). During the pre-
training described in Section 6.1, this discriminator easily learns to
distinguish the (noisy) classified phase structures of real motion and
motion produced by the pre-trained generator. During adversarial
training, the phase discriminator’s accuracy remains balanced with
the generator’s while the generator’s output is improving in quality.
We visualize the benefits of the phase discriminator for encouraging
better gesture motion dynamics in the supplemental video; without
the phase discriminator, the motion shows no clear holds or accel-
erations characteristic of the stroke phase. The motion appears to
correspond less with the speech prosody.

8.2 Motion realism discriminator

The phase discriminator’s judgment alone is not a sufficient con-
straint for the generator’s output. As described in Section 6.2, the
automatic phase label classification of the generator’s output and
the phase classifier’s naivety with respect to non-human point
clouds provides too much room for the generator to produce unre-
alistic data. The motion discriminator presents a better constraint
for maintaining a skeleton structure as it sees the generator’s out-
put directly and successfully constrains the generator to data points
resembling a skeleton structure. Figure 1 e) visualizes the output
distribution produced by a generator unconstrained by a motion
discriminator. The supplemental video also shows a sample of the
motion produced without a motion realism discriminator; the joint
positions move away from the skeleton structure, producing output
not resembling human motion.

8.3 Minibatch discriminator

As a vanilla discriminator only judges output sequences in isolation,
without taking the context of the data batch into consideration, the
generator can suffer from mode collapse, as described in 6.3, and
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visualized by the plotted data distribution in Figure 1 c¢). Our mini-
batch discriminator successfully forces the generator to produce
more diverse output. The supplemental video shows the repetitive
motion generated under mode collapse, as well as the improved,
diverse output with minibatch discrimination. We considered two
alternative integrations of minibatch discrimination into our model,
namely as part of the motion realism discriminator and as part of a
separate discriminator. In practice, we find the adversarial training
to be more stable by outsourcing the minibatch discrimination to
a separate discriminator only receiving motion input. Generator
training was less likely to collapse with respect to one discriminator
when the adversarial objective was more distributed. The benefit
of employing multiple discriminators has also been discussed in
previous works [Albuquerque et al. 2019; Durugkar et al. 2016].

8.4 Displacement discriminator

Learning from the phase discriminator’s feedback is potentially
difficult for the generator due to the hidden layers between the
generator and phase discriminator (i.e., the phase classifier’s com-
putations that are inaccessible to the generator). The generator’s
motion output is first converted to per-frame offsets of the joints
and then passed to the classifier for higher level feature extraction.
Introducing a discriminator receiving the same processed motion
as the classifier can provide more direct feedback. In practice, we
found that the addition of such a displacement discriminator sped-
up learning and moved predictions away faster from the damped
baseline motion produced by the pre-trained generator. We visu-
alize this by plotting an example data distribution in Figure 1 d).
The slow departure from the mean pose when training the model
without the displacement discriminator is also shown in the sup-
plemental video. We also illustrate the smoothing benefit of the
displacement discriminator in the video: When training the gener-
ator without any discriminator receiving the joint offsets (i.e. with
neither the displacement discriminator nor the phase classifier and
discriminator), the motion output displays a great amount of jitter.
We show that adding the displacement discriminator reduces jitter
to alarge degree. This discriminator receives the smallest weighting
in the generator’s objective.

8.5 Adversarial error weighting

We find a weighting of 2:4:4:1 for the error for the: phase discrimina-
tor, motion realism discriminator, minibatch discriminator, and the
displacement discriminator respectively, to achieve the most sta-
ble training, measured by the accuracy of the binary cross-entropy
objective for each discriminator. This weighting allows us to see sta-
ble accuracy improvements for the generator across all adversarial
objectives without collapse with regard to one or more objectives.

8.6 Objective losses

The discontinuation penalty is largely successful in reducing the
positional jumps between predicted motion sequences, making the
model more applicable for continuous gesture generation for long
sequences of speech input. The finger distance penalty proved a sim-
ple measure to avoid unrealistic finger positions without strongly
constraining the generator in its predictions.
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9 DISCUSSION

We explored generative adversarial networks for speech-to-gesture
translation with higher level feature extraction. For this purpose,
we first recorded a dataset of over six hours of natural, conversa-
tional speech with high-quality 3D motion capture. Gesture motion
is marked by distinct dynamics, phases of acceleration and effort,
of pause, and of relaxation. These higher-level dynamics can be
difficult to capture implicitly. To enforce these dynamics more ex-
plicitly in a top-down manner, we train a classifier to detect these
phases automatically, and then train a phase structure discriminator
to detect realistic versus non-realistic phase sequences. To train
the classifier, we hand-annotated the phases of a subset of over 3.5
hours of the dataset using 9 different phase labels.

Instead of using a standard regression loss for our gesture gener-
ator, we trained our model in a generative adversarial setting with
multiple discriminators. We see a clear advantage of adversarial
training over using a standard regression loss in that the produced
motion has a larger range and appears much less damped.

Using multiple discriminators, we phrase the speech-to-gesture
generation problem as a series of sub-problems. We use our au-
tomatic phase labelling to enforce a more realistic gesture phase
structure in our output; this is the task of the phase structure dis-
criminator. The phase structure discriminator enables the enforce-
ment of higher level characteristics in the output without having
to rely on implicit learning from a large amount of data.

Because an automatic phase classifier will always assign some
phase label to even random point clouds, we constrain the motion
output with a second discriminator judging the joint positions as
real or fake; this is the task of the motion realism discriminator.
Because the motion realism discriminator’s task is to judge one
generated motion sequence at a time, it can allow for the same
sequence to be generated repeatedly. A minibatch discriminator
detects such repetitive patterns, ensuring diversity in the output.
Generated motion can often look jittery; we address this by includ-
ing a the training objective of realistic joint displacement per frame,
monitored by the displacement discriminator.

To our knowledge, this is the first work using adversarial training
for generating 3D gesture motion from natural speech, and the first
work exploring the use of multiple discriminators. We observe
a benefit of using multiple discriminators to stabilize adversarial
training, and we report how each discriminator addresses a distinct
sub-problem in the gesture generation task. We employ explicit
modelling of the dynamics of gesture motion to allow learning of
these higher level features from a smaller dataset. We see our work
as a further step towards enabling automatic animation of realistic
conversational agents.

Our results are limited to gesture generation for the single speaker
we recorded and more data of various speakers would be neces-
sary to make generalizations. Due to the high variance of gesture
behavior across speakers, this is a very difficult task. Because we
generate gesture motion from prosodic speech features, semanti-
cally meaningful gestures can hardly be inferred without explicitly
employing speech recognition methods. Speech recognition, how-
ever, would likely only yield a benefit when using a much larger
dataset, ensuring a number of examples of the same phrases.
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10 FUTURE WORK

While the generated motion improved greatly with respect to stan-
dard regression loss training, the motion still lacks realism. Looking
forward, we will explore other measures of realism that may com-
plement adversarial training.

We are furthermore interested in explicitly enforcing gesture
phase by first determining the appropriate gesture phase and then
using this as a conditional input for the generator, similar to the
approach proposed by Holden et al. [2017], who use locomotion
phase as input in a character control system. This would require
gesture phase extraction from only speech, rather than motion data.
In this regard, Yunus et al. [2019] report interesting initial results
in predicting gesture phase from prosodic speech features. We will
also explore the use of convolutional networks within a generative
adversarial paradigm, such as in Ginosar et al. [2019], exploring
visual data representations of speech as well as motion.
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