Compression and Image Formats

Compression
- Reduce amount of data used to represent an image/video
 - Bit rate and quality requirements
- Necessary to facilitate transmission and storage
- Required quality is application dependent
 - Medical vs. entertainment
- Data is “information”
 - Bits per second (bps), bits per pixel (bpp)

Compression is Necessary
- Example of a normal TV picture over a telephone network:
 - Capacity of network: 56,000 bps
 - Signal:
 - Image is 288 x 352
 - RGB color, 8 bits each channel
 - 30 frames per second
 - Data need: 288 x 352 x 8 x 3 x 30 = 72,990,720
 - 1289 times greater than capacity!
 - Current networks are faster, but videos are larger

Lossy vs. Lossless Compression
- Lossless Compression
 - No information is lost
 - Original image/video can be completely restored
- Lossy Compression
 - Some information is lost
 - Reduction in “quality” of image/video
 - Generally higher compression rates

Reason for hope
- Not all the data is required for a believable image
 - There is redundancy

Statistical Redundancy
- Interpixel Redundancy
 - Groups of pixels are not independent
 - Related in space and time
- Spatial Redundancy
 - For most images, consecutive rows (or columns) will be highly correlated
 - Same for rows slightly further a part, but this decreases as the separation gets larger
 → Can predict pixel intensity from neighbor

1. From: “Image and Video Compression” by Shi and Sun
Statistical Redundancy

- Temporal Redundancy (Interframe Redundancy)
 - Pixels do not change much from frame to frame in a sequence
 - Observation from videophone-like signal:
 - Less than 10% of pixels change by more than 1% from frame to frame
 - Can predict pixel intensity from previous frame

- Coding Redundancy
 - Some values will occur more frequently in an image than others
 - e.g. Some colors are rare
 - Use less bits for the common colors and more for the uncommon ones
 - Reduces the total number of bits
 - e.g. Huffman codes
 - Better coding schemes can more efficiently represent the data

Psychovisual Redundancy

- Image must read correctly to the human visual system (HVS)
 - Complicated and nonlinear
 - Tune to what people perceive
 - Some differences are much more important than others

- Luminance Masking
 - If background is bright, larger difference in intensity is needed to distinguish an object from the background
 - Suggests that noise will be more visible in a dark area than a light one
 - Nonuniform quantization can be more effective

- Texture Masking
 - Discrimination threshold increases with picture detail
 - i.e. Errors will be more noticeable in uniform/smooth areas of the image

Masking

- How sensitive the eye is to stimulus depends on the presence of another stimulus
Psychovisual Redundancy

- Frequency Masking
 - Human eye acts like a low-pass filter
 - Less sensitive to high frequency noise

- Temporal Masking
 - It takes time for the visual system to adjust after a rapid change in the image
 - Lower sensitivity during this time

Psychovisual Redundancy

- Color Masking
 - People are most sensitive to green, then red and last blue
 - Can allocate data (bits) based on this
 - Luminance (intensity) and chrominance (hue and saturation) can be a better representation than RGB
 - Can work in luminance space without distorting color (e.g., bring out shadow details with histogram equalization)
 - People are more sensitive to luminance than chrominance
 - Use more compression for chrominance than luminance

Image Formats

- JPEG (.jpg)
 - Became an international standard in 1992
 - Different modes
 - Lossy
 - Uses Discrete Cosine Transform (DCT)-based coding
 - Beyond the scope of this course
 - Image is divided into 8x8 blocks, DCT run on each block
 - Coefficients of DCT are stored with image
 - Lossless
 - Based on predictive coding (also beyond scope)
 - Three neighboring pixels are used to predict current pixel
 - Huffman or arithmetic coding is used to store prediction difference

Common Image Formats

- JPEG (jpg)
- PNG
- GIF
- TIFF
- Bitmap

JPEG

- Different modes
 - Hierarchical
 - Image is spatially down sampled into a pyramid of progressively lower resolution images
 - e.g., an 8x8 can be sampled to a 2x2 can be sampled to 1 pixel
 - Can transmit progressively, lower resolution first and then add higher resolution detail
 - Can use either a lossy or lossless coding scheme
JPEG 2000 (`.jp2`, `.jpx`)
- Uses wavelet transform instead of DCT
- Provides excellent coding efficiency and good quality
- Wavelet transform also used in MPEG-4

More on (lossy) JPEG
- Can control amount of compression
 - Tradeoff between quality and image size
- **Every time you save an image, it will be recompressed and there will be a loss of quality**
 - Do not repeatedly edit and save lossy jpeg files
- 8-bit gray scale images
- 24-bit color images (8 bit each for RGB)

TIFF
- Lossless (in practice)
- Large file sizes
- 1 to 48 bit color

GIF
- Old format, developed by Compuserve
- 8-bit indexed color
 - Table of 256 colors (8 bits)
 - Each pixel stores a table index
 - All the colors that can be displayed in the image
 - **Image can only contain 256 colors**
 - 24 bit color gives 16 million colors
 - Huge reduction in color space
 - Bad for photographs, may work for images with limited colors
 - Lossless for those 256 colors

PNG
- Designed as open-source successor to GIF
- 8, 24 or 48-bit color
- Lossless
 - Image files can be large
 - No loss of quality
 - Good format for working with images
- Compression based on patterns in image
- Does well with large, uniformly colored areas

Read More
Analog vs. Digital Transmission

Transmission of Signals

- Goal of analog and digital transmission is different
- Analog signals:
 - Goal is to exactly reconstruct the original signal
 - Errors lead to degradation
 - Diagram on board
- Digital signals:
 - Goal is to reconstruct the pattern of 0's and 1's encoded in signals
 - Signal may be noisy, but no loss in quality as long as the 0's and one's can be detected
 - Checksums to verify transmission
 - Diagram on board
 - With digital, it is possible to make an exact copy
 - Not true with analog