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Abstract—In this paper, we present SoDa, an irradiance-
based synthetic Solar Data generation tool to generate realistic
sub-minute solar photovoltaic (PV) output power time series,
that emulate the weather pattern for a certain geographical
location. Our tool relies on the National Solar Radiation Database
(NSRDB) to obtain irradiance and weather data patterns for the
site. Irradiance is mapped onto a PV model estimate of a solar
plant’s 30-min power output, based on the configuration of the
panel. The working hypothesis to generate high-resolution (e.g. 1
second) solar data is that the conditional distribution of the time
series of solar power output given the cloud density is the same for
different locations. We therefore propose a stochastic model with
a switching behavior due to different weather regimes as provided
by the cloud type label in the NSRDB, and train our stochastic
model parameters for the cloudy states on the high-resolution
solar power measurements from a Phasor Measurement Unit
(PMU). In the paper we introduce the stochastic model, and
the methodology used for the training of its parameters. The
numerical results show that our tool creates synthetic solar time
series at high resolutions that are statistically representative of
the measured solar power and illustrate how to make use of the
tool to create synthetic data for arbitrary sites in the footprint
covered by the NSRDB.

Index Terms—Solar PV data, synthetic models, NSRDB

I. INTRODUCTION

There is an increasing need for realistic simulations using
high-resolution solar power generation datasets that explore
the impact of the penetration of solar power and devise control
strategies [1]. For this, it is important to effectively model
the uncertainty and variability in solar energy at fast time
resolutions and produce realistic synthetic data.

Several papers have proposed different approaches to model
the stochastic nature of solar energy [2] that can be broadly
classified as physics based, model-based and model-free.
Physics based methods such as [3] are based on the underlying

This research was supported in part by the Director, Cybersecurity, En-
ergy Security, and Emergency Response, Cybersecurity for Energy Delivery
Systems program, of the U.S. Department of Energy, under contract DE-
AC02-05CH11231. Any opinions, findings, conclusions, or recommendations
expressed in this material are those of the authors and do not necessarily
reflect those of the sponsors of this work.

physics that governs solar irradiance and sometimes incor-
porate numerical weather predictions (NWP). Model-based
methods like in [4] use statistical models such as Markov
models to capture the uncertainty and variability. Model-free
methods are black-box methods, like artificial neural networks
[5] and support vector machines to mimic the variability in
solar data by using large training datasets. There also exist
hybrid methods that are a combination of aforementioned
approaches. However, high-resolution solar power measure-
ments, that could be used to analyze a feeder where there are
multiple sources are scarce, and forecasting methods do not
lend themselves directly to producing synthetic time series,
since they rely on historical solar PV data. More abundant
are, however, historical solar irradiance data that can be used
to produce solar PV data as shown in [6] for example.

Although solar irradiance measurements can be recorded
using ground-based sensing instruments like pyranometers and
pyrheliometers, their accuracy is not very high and strongly
depends on data acquisition and calibrations methods [7], [8].
Additionally, the frequency of sampling varies widely from
minutes to seconds and these datasets are known to contain
spurious or missing instances, thus, they are not suited for
power systems modeling.

Thus, solar irradiance measurements from geostationary
satellites and state-of-the-art Physical Solar Models (PSMs)
are used to develop the National Solar Radiation Database
(NSRDB) [9]. NSRDB has achieved spatial resolution up to
4 kilometers and temporal resolution of 30 minutes. However,
the temporal resolution is wholly inadequate to model the un-
certainty and variability of solar resources in the electric power
grid as it pertains to the interaction with other controllable
devices on the grid. Sub-minute solar variability may impact
the power quality of grid-connected systems [10], inverter
sizing [11], or may lead to suboptimal inverter control policies
[12].

Contribution: The development of SoDa is motivated by
the need of using realistic high-resolution solar PV data to train
algorithms that can ensure voltage stability via Distributed
Energy Resources (DER) control. In this paper we provide



a method to fill the gap highlighted and synthetically generate
statistically accurate solar data time series at high resolution. It
leverages the NSRDB and constructs a stochastic model for the
cloud behavior that fill the 30 minutes intervals with realistic
solar PV trends, obtained by matching the statistics with those
of a site where high resolution solar power data from PMUs
are available. The stochastic model used is inspired by our
prior modeling work in [13], [14] which is a statistical model
that is physics-inspired. Our model, unlike traditional PSMs,
scales for high resolutions, from seconds to minutes.

Note that although previous works as in [5] also generate
synthetic solar generation scenarios, they require large sets
of training data and may require retraining when generating
scenarios for a different geographical region or different panel
characteristics. Our SoDa tool is adaptive and could be applied
to any geographical region in the ambit of NSRDB, without
the need for additional training.

This manuscript is organized as follows. In Section II , we
leverage the NSRDB and present a method to generate power
time series from weather variables. Section III details the cloud
regime parametrization and stochastic models used for each
regime. Section IV presents the results of a study compared
against measurements from a PMU. We conclude the paper
and outline future directions in Section V.

II. MODELING PV POWER GENERATION FROM AN
IRRADIANCE-BASED SOLAR MODEL

Satellite remote sensing yields high-density measurements
that are ingested by PSMs, and can be used to create solar
datasets like the NSRDB. Although these datasets may not
capture the variability of interest to model DER control,
they can model the seasonal and geographical variability in
larger time scales that a stochastic model may not be able to
reproduce from training data. The NSRDB is the current state-
of-the-art solar dataset in the US, and therefore our algorithm
to generate synthetic solar power time series for a certain
location leverages the NSRDB for the development of our tool.
Prior to detailing our model, we describe the dataset.

A. The National Solar Radiation Database (NSRDB)

The NSRDB is a serially complete state-of-the-art collection
of meteorological data developed at the National Renewable
Energy Lab (NREL). It uses a physics-based solar model
that leverages satellite-based measurements to generate me-
teorological variables, covering the entire United States along
with other international locations. Time series in the NSRDB
are provided at every 4-km and 30 minutes from 1998 to
2017. The dataset includes measurements of solar radiation:
global horizontal (GHI), direct normal (DNI), diffuse hori-
zontal irradiance (DHI) and other weather variables such as
atmospheric pressure, ground-level temperature, wind speeds
or cloud coverage. NREL offers a free Python API to retrieve
NSRDB data from any location available which we have
integrated in our tool, providing flexibility to operators looking
to obtain solar times series at specific locations.

Fig. 1. A comparison between a 30-min and 1-second solar profiles showing
how 30-minute data are insufficient to capture the underlying variability.

Although the NSRDB complements ground-based solar
measurements by making time series available at multiple
locations, it does not, however, match the sampling frequency
of pyranometers. Consequently, the direct use of the NSRDB
in dynamic studies may mislead the operator by not capturing
the variability under 30-minute intervals, resulting in bad
control policies. An alternative solution is to interpolate low-
resolution data to obtain a more granular dataset. In practice,
this method is not suited for the generation of high-resolution
data since the variability of solar irradiance in sub-hourly times
frames may strongly deviate from the interpolated values. This
is illustrated in Fig. 1.

Prior to introducing the variability due to clouds of the solar
PV output via a stochastic model, we generate a low resolution
solar power time series using the 30-minute irradiance data
from the NSRDB. We use the approach presented by [6],
validated against real PV panel performance [15], [16] and
used by NREL’s System Advisor Model (SAM) [17]. This
model ingests DNI, DHI, wind speed and temperature data
from the NSRDB to produce 30-minute solar power time
series. The method is explained in the next subsection.

B. Mapping irradiance into PV power generation

Solar irradiation is received by a panel with an angle of
incidence θ. The angle of incidence θ in a fixed-tilt solar panel
is given by

θ = cos−1
(

sin θs cos (γ − γs) sinβ + cos θs cosβ
)

(1)

where θs, γ, γs and β are the solar zenith, surface azimuth,
solar azimuth and surface tilt angles, respectively. A similar
algorithm to calculate θ in one-axis tracker panels is available
in the work from [18]. To model the shading, we introduce an
attenuation f(θ):

f(θ) = b0 + b1θ + b2θ
2 + b3θ

3 + b4θ
4 + b5θ

5 (2)

where (b0, . . . , b5) are coefficients of a polynomial fit that is
specific to the glass in the panel. The transmitted irradiance
on the plane-of-array It[k] at time k = 0, . . . , n−1, is:

It[k] = f cos θIn[k] + Ids[k] + Idg[k] (3)

where In[k], Ids[k], Idg[k] are the normal, sky diffuse and
ground diffuse irradiance, respectively. The normal and diffuse



components of solar irradiance are often given as a result of
running climate models. In our work, these values are obtained
from the NSRDB. To calculate the DC PV power we introduce
an efficiency factor for the panel due to temperature:

ξ[k] = pdc0 (1 + κ(τc[k]− τr)) (4)

where pdc0 is the solar panel DC nameplate capacity given
in watts, κ = −0.5%/C is a temperature coefficient, and
τc, τr are the cell and reference temperatures, respectively.
It should be noted that τc[k] is generated as a result of
running a thermal model [19] that accounts for the ambient
temperature and convection losses due to air flow. Then,
we can define the vector ι[k] = [In[k], Ids[k], Idg[k]]

> and
ν[k] = [f(θk) cos(θk), 1, 1]

> and express the resulting DC
PV power produced as:

p̂dc[k] = ξ[k] (ι[k])
>
ν[k] (5)

We also model the effect of the inverter as a low-pass filter,
clipped at the nameplate capacity of the inverter p̄ =

pdc0
δ where

δ ≥ 1 is the DC-to-AC ratio. Thus, the resulting AC power at
time instant k ∈ Th and n = |Th| = 48 is defined as follows,

p̂ac[k] =

 εp̂dc[k] 0 < p̂dc[k] < p̄ ku ≤ k ≤ kd
εp̄ p̂dc[k] ≥ p̄ ku ≤ k ≤ kd
0 else

(6)

where ku, kd are the sunrise and sunset times, respectively and
ε < 1 is an coefficient that accounts for AC losses, e.g. inverter
losses, wiring, step-up transformer etc. The temporal resolu-
tion of the generated time series is that of the NSRDB, i.e. 30
minutes or 48 intervals in 24 hours. In the following section,
we address the issue of augmenting the resolution of the data
by using a stochastic model that realistically reproduces the
trends expected due to the weather information. Specifically,
we define a model that will allow us to leverage the power time
series from a PMU as training data to learn the parameters for
the given weather pattern labels that the NSRDB data provide
for the corresponding location, as explained in more detail
next.

III. USING STOCHASTIC MODELS TO GENERATE
HIGH-RESOLUTION SOLAR POWER TIME SERIES

In this section, we propose a method to learn the parameters
from PMU measurements that characterize the statistics of
solar power in minute and sub-minute time scales under dif-
ferent weather regimes. Based on these estimated parameters,
samples of solar data are drawn from the appropriate distribu-
tions. We argue that climatic and topographic effects on solar
power are captured by the NSRDB, and that the conditional
distribution of sub-minute variability of solar power given the
cloud type is the same for different locations. The model is
loosely inspired by our previous modeling efforts [13] for
probabilistic forecasting of solar PV outputs [14].

A. Cloud regime parametrization

We denote the AC component of the power produced by the
PV plant and measured by the PMU on day d and time instant
k ∈ T = {0, 1, . . . , nT − 1} as pd[k], where T is the number
of samples in a 30-minute interval. The superscript in p̂acd [k]
has been omitted for readability in the high resolution signal.
Solar irradiation is attenuated by clouds and aerosols, modeled
as a random mask that subtracts a percentage of the incoming
light rays at any given time. We model pd[k] as follows

pd[k] = sd[k]− pbd[k] + ped[k] (7)

where sd[k] is an upsampled version of the 30 minute solar PV
generation calculated from (1)-(6), and pbd[k], ped[k], capture
the attenuation of the direct component and edge-of-cloud
effect, respectively. We argue that any attenuation of the
diffuse component happens over longer than 30 minute periods
and therefore, such effects are encapsulated in sd[k]. To obtain
sd[k] at high resolution we up-sample (↑ T ) and use linear
interpolation filter g[k] = (1−k/T )rectT (k), where rectT (k)
is a rectangular pulse between [0, T ], that is:

sd[k] =

n−1∑
`=0

p̂ac[`]g[k − `T ] (8)

The attenuation of solar irradiation depends on the cloud type
which is provided by the NSRDB [9]. However, the cloudy
type label corresponds to an interval of 30 minutes. Let ϑ[`] ∈
{0, 1, . . . , 12} be the cloud type for the `th interval, k ∈ T` =
{(`− 1)T, . . . , `T}. We consider two cases, the sunny regime
and cloudy regime that yield for an interval k ∈ T` the model:

pd[k] =

{
sd[k]− pbd[k] ϑ[`] ≤ 1

sd[k]− pbd[k] + ped[k] ϑ[`] > 1
(9)

It should be noted that ped[k] cannot exist in the sunny
weather due to the absence of low and mid-level clouds that
may cause this effect. Similarly, the existence of pbd[k] in
the sunny weather is very sparse. Such a model allows the
separation of the components and study a plausible stochastic
model for them. In the following subsection, we present
a stochastic model that encompasses all the cloud regimes
represented as labels in NSRDB dataset.

B. Parametrization of the attenuation components

For any weather regime, ∀ϑ[`], the power components are:

pbd[k]≈
∑
q

h̃w[q]zw[k − q], ped[k]≈
∑
q

h̃m[q]zm[k − q] (10)

where the direct attenuation, pbd[k], and edge-of-cloud effect,
ped[k], components are modelled as the convolution of a one-
dimensional filter h̃m[q], h̃w[q], with stochastic input zm[k]
and zw[k], respectively. The filter h̃w[q] models the attenuation
of power due to clouds and aerosols represented as drop in
direct solar power and is chosen to be a Hamming window:

h̃w[q] = 0.54− 0.46 cos

(
2πq

M − 1

)
0 ≤ q ≤M − 1 (11)



Fig. 2. A block diagram that summarizes the modelling and generation of synthetic 1-second resolution solar data. We obtain a deterministic solar time series
at 30-minute resolution using the NSRDB. We upsample the signal and and use the high-resolution stochastic cloud model with parameters trained on PMU
data to generate the final results at 1-second resolution.

Here, the large size of a megawatt-scale PV plant has a
geographical ”smoothing” effect on the attenuation, and the
Hamming window best reflects this behaviour, instead of our
prior model that considers a sudden drop in power as in [13].
The filter h̃m[q] is a variant of the Morlet wavelet as follows:

h̃m[k] = e(
2k
M −1)

2

|cos (−20(1 + 2k/M))| , 0 ≤ k ≤M−1

and it is used to capture the edge of cloud effect [20] followed
by the attenuation of the direct power component. The filters
are shown in Fig. 3.

Fig. 3. Hamming window and Morlet wavelets

The stochastic input zm[k] is the product of a Bernoulli ran-
dom variable bm[k] and an exponentially distributed random
variable z′m[k] whose parameters depend on the cloud type
index ϑ[`] . Input zw[k] is also similar,

zm[k] = bm[k]z′m[k], zw[k] = bw[k]z′w[k] k ∈ T` (12)
bm[k] ∼ B(βm,ϑ[`]), z

′
m[k] ∼ Exp(λm,ϑ[`]), (13)

bw[k] ∼ B(βw,ϑ[`]), z
′
w[k] ∼ Exp(λw,ϑ[`]), (14)

C. Learning the parameters of the stochastic models

To learn the parameters from the PMU data we ignore the
Bernoulli factors in fitting the observations, and regularize
the problem inducing sparsity in zm[k] and zw[k] solving
a LASSO problem [21]. Let yd ∈ RnT denote the vector

of attenuated power for a day d with entries defined as
yd[k] = sd[k]− pd[k]. The assumption is that:

yd = Φmzm + Φwzw + ε, yd ∈ RnT , zm, zw ∈ R(nT−M)

where ε is modeling error and Φw,Φm ∈ RnT×(nT−M)

are the Toeplitz matrices of the convolution operations
yw = hw ∗ zw, ym = hm ∗ zm of a one di-
mensional filter hw,hm ∈ RM with stochastic input
zw, zm ∈ R(nT−M). The Toeplitz matrices Φw,Φm are
characterized by the first columns [hw[0], . . . , hw[M −
1],0nT−M ] and [hm[0], . . . , hm[M − 1],0nT−M ], and first
rows [hw[0],0nT−M−1] and [hm[0],0nT−M−1], respectively.
Here, we want to estimate the stochastic input vectors zm, zw
regularized in a LASSO formulation to avoid overfitting:

min
zm,zw

‖y−Φmzm−Φwzw‖2+ρm(1>zm)+ρw(1>zw)

subject to zm, zw ≥ 0, (15)

After obtaining the estimates of zm, zw, we estimate the
parameters of the Bernoulli and exponential distributions for
each cloud type. More specifically, given the cloud type
ϑ[`] ∈ {0, 1, . . . , 12}, the unknown distribution parameters are

Θ , {λm,0, λm,1, . . . λm,12, λw,0, λw,1, . . . λw,12} (16)

B , {βm,0, βm,1, . . . βm,12, βw,0, βw,1, . . . βw,12} (17)

To estimate, we segment the data based on the cloud type
Zim = {zm[k]|k ∈ T`, ϑ[`] = i} and Ziw = {zw[k]|k ∈
T`, ϑ[`] = i}, ∀`, i ∈ {2, . . . , 12} and set the values below a
certain threshold τ to zero. Also, by definition, λm,0 = λm,1 =
∞ since these correspond to sunny regime. The remaining
λm,i, λw,i are maximum likelihood (ML) estimates, i.e.

λm,i =
1∑

zm[k]∈Zi
m,zm[k]>τm

zm[k]
, (18)

λw,i =
1∑

zw[k]∈Zi
w,zw[k]>τw

zw[k]
i ∈ {2, . . . , 12} (19)



TABLE I
SUMMARY OF THE STOCHASTIC INPUT PARAMETERS LEARNED FROM THE

1-SECOND RESOLUTION PMU DATA

NSRDB Cloud Type Label ID λm,i λw,i βm,i βw,i

Clear, Unknown Type 0, 10 ∞ 5.98 0.0013 0.0019
Probably Clear 1 ∞ 5.80 0.0028 0.0090
Fog, Dust, Smoke 2, 11, 12 3.29 6.50 0.0097 0.0035
Water, Overshooting 3,9 3.90 6.07 0.0055 0.0028
Super-Cooled Water 4 3.25 5.88 0.0189 0.0041
Opaque Ice 6 4.19 4.83 0.0004 0.0011
Cirrus 7 3.10 5.15 0.0074 0.0042
Mixed, Overlapping 4, 8 4.09 6.66 0.0036 0.0080

Similarly, we estimate the parameters of the corresponding
Bernoulli distribution as

βm,i = |Zim|−1
∑

zm[k]∈Zi
m,zm[k]>τm

1 (20)

βw,i = |Ziw|−1
∑

zw[k]∈Zi
w,zw[k]>τw

1 (21)

We depict the block diagram describing the overall stochastic
modelling in Fig 2.

IV. RESULTS

Learning the parameters for the stochastic model using
PMU data at 1-second resolution:
We train the stochastic model using data from a solar site in
Riverside, CA, where a PMU measures the generation at a rate
of 1-second per sample. We use a filter of length M = 600
seconds to account for the effects of clouds traveling across
the PV site. Our assumptions are based on an average cloud
speed of 40 kmph and we use PMU data from a 7.5 MWdc
plant with an extension of approximately 1.5 km2. It would
take 5 minutes minutes for the cloud to pass directly over
the plant, and the tails of the wavelets (i.e. the remaining 5
minutes) model the transition between clouds. The parameters
are calculated as a result of solving the problem in (15). We
use the regularizers ρm, ρw to ensure the input to be sparse.
In particular, we use ρm � ρw since we expect the expect
the stochastic input of the Morlet wavelet filter to be sparser
that of the Hamming window, e.g. ρm = 0.1, ρw = 0.01.
The estimation of parameters using (18) and (20) yields the
parameters presented in Table I. We use τm = 0.2, τw = 0.1 to
threshold the data. The NSRDB contains 13 different labels
for the cloud classification. Some of these cloud types are
rarely present in the data, e.g. dust and smoke conditions.
Furthermore, the closest NRSDB site to the PMU location
did not contain any data corresponding to label IDs 4,9,10,11
and 12. However, the NSRDB includes a description of the
cloud type that we leveraged to merge different labels as shown
in Table I. Fig. 5 shows a plot a histogram of the non-zero
components of vectors zm, zw to validate our assumption that
the non-zero components of the stochastic input follows a
quasi exponential distribution as in (12).

Next, we showcase the stochastic models by drawing sam-
ples from the appropriate distributions. We show the results for
two different sites where PMU data is sampled every second
and every minute, respectively.

Generating synthetic solar data at 1-second resolution:
In Fig. 4, we show the 1-second resolution results for different

weather conditions throughout the day, namely a sunny, partly-
cloudy and two cloudy days. Our results are statistically
representative of those measured by the PMU. We show
slightly above average variability in the early and late hours
of the day. We argue that this may be an artifact of the
surroundings of the PMU site, such as buildings, trees or walls
that may shade the panels during the sunrise and sunset hours.

Generating synthetic solar data at 1-minute resolution:
We prove the validity of our models for a different site in
Berkeley, CA where a PMU measures solar generation with a
1-minute sampling rate. Our models are trained on 1-second
resolution data, thus, we first generate solar time series at that
resolution. Then, we downsample the solar generation to match
the resolution of the PMU. The results are shown in Fig. 6.

Potential improvements: We acknowledge some of the
limitations of our model. For instance, the model does not
account for time-of-day variations in the variability of solar
generation. This may create undesired fluctuations of solar
power when the generation is low. It should be noted that this
model is trained with MW-scale PMU data, and that further
corrections may be needed if single kW-scale installations are
modeled. For instance, when modeling rooftop solar, the land
covered by the panels (e.g. a neighborhood) should be large
enough in order for our assumptions to hold. Also, this model
leverages the NSRDB to generate synthetic data and although
the footprint of the NSRDB is rather large, the use of this
tool may be limited to some areas in the world. Moreover, a
mismatch between the NSRDB classification and the actual
cloud regime may exist.

However, note that, the scope of our modeling approach can
be extended beyond using the NSRDB. If there is sufficient
input from the user to accurately describe sunny day pattern
such as information about the latitude, longitude, panel orien-
tation, capacity of the system, we can account for geographical
variability. The cloud-type input can be drawn from weather
prediction databases. With only these two inputs, it is possible
to generate synthetic high-resolution solar power dataset for
any desired location. The NSRDB gives us more information
than what is needed for the success of our method and there-
fore, we incorporate that in our generation (or interpolation)
of solar profiles. Finally, we have validated our models using
data from two plants, in Riverside and Berkeley. To reaffirm
the validity of our assumptions and models, a more thorough
validation is left for future work.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented stochastic models that,
trained on PMU data, can generate synthetic statistically-
representative solar time series at 1-second resolution. This
model, unlike traditional PSM, can scale for high resolutions.
Furthermore, we test the performance of our tool in two
different locations and show that its use is not limited to a
single temporal solution, e.g. 1-second or 1-minute.

Going forward, we want to address the aforementioned
limitations and extend the capabilities of our tool by allowing



Fig. 4. Generation of solar time series as a result of using the stochastic models with the parameters learned from the regression problem provided in (15). We
show three different days characterized by sunny (first), partly cloudy (second) and cloudy (third and fourth) weather. Results are shown for a one dimensional
filter of length M = 600, i.e. 10 minutes.

Fig. 5. Histogram of the non-zero components of stochastic input. On top of
the histogram, we show the exponential distribution that best fits the histogram
data.

Fig. 6. Generation of stochastic 1-minute resolution solar time series for a site
in Berkeley, CA. The right figure shows a mismatch between the generated
and measures solar data that can be attributed to inaccurate cloud labeling.

the user to input its own low-resolution solar profile. A Python
version of this tool will soon be available in pip and Github.
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