
Unsafe at Any Clock Speed: the Insecurity of Computer System

Design, Implementation, and Operation

Sean Peisert

November 10, 2021

“It appears that there are enormous differences of opinion as to the probability of
a [system failure]. The higher figures come from the working engineers, and the very
low figures from management. When playing Russian roulette the fact that the first
shot got off safely is little comfort for the next. [T]here have been recent suggestions
by management to curtail elaborate and expensive tests as being unnecessary. This
must be resisted. The proper way to save money is to curtail the number of requested
changes, not the quality of testing for each.

“Let us make recommendations to ensure that [management deals] in a world of
reality in understanding technological weaknesses and imperfections well enough to be
actively trying to eliminate them. They must live in reality in comparing the costs and
utility. Only realistic schedules should be proposed, schedules that have a reasonable
chance of being met. If in this way support [would not exist], then so be it. For a
successful technology, reality must take precedence over public relations, for nature
cannot be fooled.” (Author’s Note: ellipses omitted for readability.)

One could be forgiven for thinking that this text came from a critique of SolarWinds Orion,
Adobe Flash, or Microsoft Office or Internet Explorer, or from a recent report that led to a set of
strong recommendations contained in a recent White House Executive Order on Cybersecurity. As
most readers of this magazine likely recognize, that would be wrong, as this is of course excerpted
and edited text written by Richard Feynman, in his appendix to the 1986 Rogers Commission
report studying the Challenger disaster, “Personal Observations on Reliability of Shuttle.” [1]

I quoted portions of Feynman’s report here because I believe that we have a similar problem in
computer software for similar reasons: companies developing software prioritize maximum share-
holder profit and productivity over software safety, robustness, and security. It is not unreasonable
or unexpected that companies prioritize profit. At the same time, many companies have embraced
“corporate social responsibility,” having recognized that supporting employees, customers, and the
broader world can positively impact both reputation and profit. As just one example, we see
healthcare organizations balance profit with patient safety, because not doing so would lead to
public outrage, which in turn would impact profits. However, with only rare exceptions do we see
a similar effort to balance shareholder primacy with software security. The consequences of this
lack of balance range from events like the major breaches, ransomware, and attacks against critical
systems like hospitals and utilities — the NotPetya attacks affecting Maersk’s shipping and port
operations worldwide, the WannaCry ransomware attacks against U.K. National Health Service
hospitals, and the Colonial Pipeline attack in the U.S.

So where is the public outrage? And how did we get to this state, and why it is acceptable
to so many organizations to live with this level of vulnerability and compromise? These incidents

1

are not mere annoyances. Real people are affected in real ways. Given this, how is it possible that
this is not a virtually identical moment to automobile safety before Ralph Nader’s Unsafe at Any
Speed [2] demonstrated the need for and barriers to mandating safety improvements in cars, and
led directly to seat belts and other safety advances? Or public and agricultural safety before Rachel
Carson’s Silent Spring [3] exposed the toxicity of the chemical DDT and led directly to its ban?
Or medical safety before John Snow’s On the Mode of Communication of Cholera [4] exposing that
germs, not “miasma,” cause disease, which led directly to water safety and sewage improvements
in London and beyond? Or the Flexner Report’s [5] impact on bringing mainstream scientific
protocols to medical education? Or the Institute of Medicine’s To Err is Human [6] exposing that
the same number of daily deaths from medical errors in the United States is equivalent to the
number of deaths from a jumbo jet crashing each day, leading directly to a fundamental change in
the approach to quality of care, and the renaming of an agency to the “U.S. Agency for Healthcare
Research and Quality”? It is an inconvenient truth that software and hardware engineers make
mistakes, those mistakes can become “bugs,” some of those bugs represent vulnerabilities that can
be attacked, and that, at times that are unpredictable, some of those vulnerabilities are attacked.
So where is the equivalent response for software quality?

In fact, the reason for this situation is essentially identical as what Feynman indicated more
than three decades ago: profit, expediency, and succumbing to the requests for “changes” (ususally
“features”). The answer as to why there isn’t public outrage surely cannot be because we accept
that shareholder profit should be prioritized over software quality. In fact I would argue that it even
does a disservice in the long term to shareholder value to prioritize short-term profit over software
quality. At some point, companies that allow enough vulnerability will see the impact in their
profits. At the same time, it isn’t like we haven’t advocated substantially more secure systems, and
even “clean slate” solutions before — certainly, with Multics [7] and the aspirations for Orange
Book A1-certified computer systems [8], there were goals to meet provably secure operational
requirements. Indeed, 46 years ago, in 1974, Karger and Schell pointed out “Multics is not Now
Secure” but went on to suggest essentially that it could be made secure if we worked just a little bit
harder [9]. However, writing in 2002 on their observations in the 28 years since the original paper,
they note [10]:

“In the nearly thirty years since the report, it has been demonstrated that the technology
direction that was speculative at the time can actually be implemented and provides
an effective solution to the problem of malicious software employed by well-motivated
professionals. Unfortunately, the mainstream products of major vendors largely ignore
these demonstrated technologies.”

A decade later, beginning in 2012, two DARPA programs run by Howie Shrobe, “Clean-slate
design of Resilient, Adaptive, Secure Hosts” (CRASH) and “Mission-Oriented Resilient Clouds”
(MRC) [11] sought to draw inspiration from “visionary ideas of the past” to develop and demon-
strate secure and resilient systems. The “Turtles All the Way Down” piece that my colleagues Matt
Bishop, Ed Talbot and I wrote in 2012, advocated building and rebuilding systems with pervasive
use of formal methods, diversity, and Byzantine fault tolerance [12] “from atoms to eyeballs” in a
13-level stack.

Fast forward to this past year when Paul van Oorschot noted in this magazine that the C
language lacks type and memory safety, “...having learned our lesson from 45 years of use, surely
we do not still use C in new projects and in building brand new systems, do we? As it turns out,
the evidence suggests we do.” [13] Van Oorschot continued, noting that in the past, even though
type-safe languages are available for use, such as Java, Go, and Apple’s Swift, the fact that those

2

languages have not been appropriate for systems development may have prolonged the use of C
and C++. As van Oorschot writes, performance languages appropriate for systems work now exist,
but perhaps it will take something like requirements for government procurement to see languages
like Rust adopted at scale. (As a side note, it is insufficient to leverage type safe languages if the
runtimes for those languages are also written in C/C++, as the runtimes for Java and Ruby are,
for example.) The wonderful “Cyber Moonshot” piece in the very next issue of S&P by Hamed
Okhravi, also advocates the use of semantically-rich processors, type and memory-safe systems
languages, and fine-grained operating system compartmentalization [14].

It is probably unreasonable to expect that these examples that I have given of attempts to
radically improve computer security would have the effects of the clarion calls in Silent Spring or
Unsafe at Any Speed — both books specifically aimed at the general public. However, scholarly
writings in the medical domain, including On the Mode of Communication, To Err is Human, and
the Flexner Report, have been transformative, whereas despite 46 years of efforts, from Karger and
Schell to the present day, I don’t believe that we’ve seen similar effects in transforing computer
security.

What I believe has changed since Karger and Schell, and perhaps even since the DARPA CRASH
and MRC programs is that technology and techniques have improved to the point that we are now
finally at a place where we can actually, practically do something about this situation. In fact, in
the same Challenger report, Feynman again even gave us a portion of the solutions — bottom-up
engineering:

“The software is checked very carefully in a bottom-up fashion. First, each new line
of code is checked, then sections of code or modules with special functions are verified.
The scope is increased step by step until the new changes are incorporated into a
complete system and checked. But completely independently there is an independent
verification group, that takes an adversary attitude to the software development group,
and tests and verifies the software as if it were a customer of the delivered product.
A discovery of an error during verification testing is considered very serious, and its
origin studied very carefully to avoid such mistakes in the future. The principle that
is followed is that all the verification is a test of that safety, in a non-catastrophic
verification. A failure here generates considerable concern.” (Author’s Note: ellipses
omitted for readability.)

Yet, regardless of the actual approach — top-down, bottom-up, or some combination of the
two — in the past, we have found Feynman’s prescription regarding the degree of assurance re-
quired utterly untenable for all but the most critical systems. Times have changed in at least two
ways: one is that we have gone from a world in which computer-controlled systems were mostly
only running commercial and military aircraft and NASA’s Space Shuttles. to a world in which
dozens or hundreds of processors exist in the modern automobile, building “control systems,” and
numerous other domains in life in which humans are dependent. A second and vital change is that
technology useful for safety and security has advanced profoundly in the past 25 years since the
Rogers Commission report was released. Let’s take a look at some of those advances:

Consider type-safe languages: Buffer overruns have been the “most dangerous” sortware weak-
ness for years. Why should the public put up with something that is exposed as public enemy
#1 year after year with little progress? In contrast, Rust has emerged as a type and memory-safe
language suitable for systems programming. Mozilla’s Servo browser engine is being written in the
Rust, and numerous Linux libraries and utilities are being rewritten in Rust. Rewriting old code in
Rust can be a tough sell although Google’s recent effort to implement site isolation in Chrome, and

3

Mozilla’s development and application of RLBox to Firefox — both significant manual efforts —
show progress can be made when the needed resources are devoted. This will also become easier as
more third party libraries are developed for Rust and more new developers learn Rust in computer
science courses.

Consider formal methods today: There exist many software elements that underlie the modern
Internet and its usage that have been revealed as substantially lacking in security rigor for years,
such as the vulnerabilities that plagued OpenSSL until organizations like Google, Microsoft, and
OpenBSD stepped in. Why is it that the public is so forgiving of the reliance on such blatantly
problematic software by major companies? And, many other examples of such software certainly
still remain. In contrast, seL4 is a formally-verified microkernel, CertiKOS is a formally verified
kernel, the Linux KVM hypervisor has been formally verified, and DARPA’s “Little Bird” is a
formally verified autonomous helicopter, having survived hacking contests as part of the DARPA
HACMS program [15], run by Kathleen Fisher, John Launchbury, and Raymond Richards, in
2017, and again at DEFCON this past year. In addition, numerous key elements of Amazon Web
Services have been formally verified, Facebook leverages the Infer system to continuously verify
code, and Microsoft’s Project Everest is developing a formally verified stack to improve secure web
communications. Not every formal verification is as useful as another and it may never be tenable
to formally verify all code, but the DARPA exercises alone seem to have demonstrated considerable
value. At the very least, there is strong evidence that building systems on top of formally-verified
elements that are now available and usable could substantially ameliorate a large swath of security
problems. Having even more verified systems that provide support for additional functionality
would help encourage broader adoption of assured systems.

Consider security-enhanced hardware today: as discussed earlier, security weaknesses often
result from the use of “unsafe” languages and shared infrastructure. In contrast, University of
Cambridge and SRI’s CHERI [16] provides a capability-based system that provides fine-grained
memory protection and software compartmentalization, thereby protecting against a host of weak-
nesses exposed by the use of unsafe languages, code injection attacks, and more. This is particularly
valuable protection when existing software cannot easily be rewritten in type and memory safe lan-
guages, for example, due to the vast amount of existing libraries written in C/C++. CHERI also
now has numerous formally-verified elements. In addition, Arm’s forthcoming CHERI-extended
Morello prototype CPU, system-on-a-chip, and board will ship early next year, and will consist of
a full industrial quality and high-performance adaptation of Arm’s Neoverse N1 CPU design. This
prototype is in fact the culmination of a kind of “moonshot” that has been developed over 10 years
and with $250 million of DARPA, United Kingdom government, and in-kind industry funding, and
seems like it could serve as a model for advancing other security techniques and technologies.

In addition to capability-enhanced hardware, consider hardware trusted execution environments
(TEEs). Running on traditional servers, including those in the cloud, requires complete trust of the
system administrator as well as the numerous levels of the stack that seek to mitigate attempts by
one user to attack another. Who is really happy about putting complete and unquestioning trust
regarding data and computation in giant corporations? In contrast, TEEs provide strong isolation
properties, sometimes even from system administrators and physical attacks. they are available
or announced from every major CPU platform, including AMD’s SEV; ARM’s v9’s Confidential
Compute Architecture, and Intel’s SGX, alongside open source TEEs, such as the RISC-V-based
Keystone. Further, some form of TEE-like “confidential computing” service is available from the
three major commercial cloud providers: AWS Nitro Enclaves, GCP Confidential Computing, and
Azure Confidential Computing. The Linux Foundation also hosts the Confidential Computing Con-
sortium (CCC). The cloud and community efforts provide the software model and cryptographic
infrastructure to make the use of confidential computing more straighforward. For usability and

4

performance reasons, not all of these architectures are useful for general-purpose computing. How-
ever, for certain workloads running on single nodes, SEV can carry little overhead beyond that of
virtualization itself, and is readily available in cloud environments.

The reluctance of organizations to adopt some of these techniques and technologies has echoes
of the White Queen informing Alice about the (lack of) availability of jam today [17]. However,
despite past failures to make significant progress toward securing systems via Multics and the
Orange Book, all of this recent progress has shown what is possible with the tools that we have
today. Organizations can use type and memory safety (Rust), formally verified components (seL4,
CertiKOS, Linux KVM), and obtain strong hardware isolation (AMD’s SEV) today. At least in the
case of the Rust language as well as cloud environments that have broad frameworks supporting
confidential computing on top of AMD’s SEV and related technologies, this can entail little extra
effort. Organizations can use Facebook’s Infer automated reasoning system for static analysis today.
Prototype hardware supporting CHERI will be available roughly at the time this piece goes to press,
and may well be in broader production in not too many more years.

I’ve enumerated a non-exhaustive list of numerous techniques and technologies here that could
all represent elements of this improvement I speak of. Not all will be part of the final solutions,
and undoubtedly there are others that I haven’t covered, such as the automated verification tools
available that showed such success during DARPA’s Cyber Grand Challenge [18] and advances in
the “grand challenges” of user-centered security that make it harder for users to make decisions
in a way that will lead to security failures [19]. Further, the solutions that I have discussed will
also not solve all problems, and will not be adopted everywhere — for example, consider all the
software written by “citizen developers” or are outsourced to the lowest bidder. But if enough of the
important software leverages these solutions, it would seem that doing so could solve a substantial
number of problems, thereby enabling security researchers and engineers to focus on the problems
for which we do not yet have solutions.

Portions of this cybersecurity vision likely are a “moonshot.” But I think it would be a mis-
representation to characterize the entire endeavor as such. So, what’s in the way? We’ve already
pointed to cost, so how do we lower that cost or overcome that barrier? Existing public sentiment
about every new security breach that takes place clearly hasn’t been enough. Perhaps the public
has just been convinced it has no choice but to accept the status quo. In contrast, I think the public
has a right to be outraged about computer security. Further, even though the government itself
suffers computer security failures large and small on an ongoing basis, the appetite for significant
regulation (e.g., liability for insecure software, substantially increasing requirements for software
and hardware security in government procurement) in this space seems not to exist. Thus, in the
face of evidence that there are in many cases relatively low bars to much safer systems, the reason
for the continued prevalence of low adoption of the components that would could systems much
safer remains something of a mystery, given that numerous key components are here now, and the
rest may well not be that far in the future from being deployed.

The barriers to large-scale adoption of emerging security techniques and technologies urgently
need to be investigated. This investigation should include a focus on technical issues, but should
also include experts who can illuminate usability, education, economic, policy, and social issues, and
other systematic barriers to technology transition for innovation. At least on a technical level, there
are few excuses not to be embracing many of the approaches that I’ve illustrated here. There are few
excuses for not writing most or all new systems code in Rust; for systems, where appropriate, to be
built using verified components and/or on top of security-enhanced hardware, and for applications
to be run on those systems wherever possible; and for the most important source code to leverage

5

modern, automated program verification tools and possibly formal methods.
In another passage from their 2002 piece, Karger and Schell [10] write:

“In our opinion this is an unstable state of affairs. It is unthinkable that another thirty
years will go by without one of two occurrences: either there will be horrific cyber
disasters that will deprive society of much of the value computers can provide, or the
available technology will be delivered, and hopefully enhanced, in products that provide
effective security. We hope it will be the latter.”

Computer systems and networks have become “unsafe at any speed.” The time to change that
is now. The future is here. There is no further room for excuse, ignorance of reality, or fooling of
nature.

References

[1] Richard P. Feynman. The Presidential Commission on the Space Shuttle Challenger Accident
Report, Volume 2, Appendix F: “Personal Observations on the Reliability of the Shuttle”,
June 6, 1986.

[2] Ralph Nader. Unsafe at Any Speed: The Designed-In Dangers of the American Automobile.
Grossman Publishers, 1965.

[3] Rachel Carson. Silent Spring. Houghton Mifflin, 1962.

[4] John Snow. On the Mode of Communication of Cholera. John Churchill, London, 1855.

[5] Abraham Flexner. Medical Education in the United States and Canada: A Report to the
Carnegie Foundation for the Advancement of Teaching. Bulletin of the Carnegie Foundation
for the Advancement of Teaching, Bulletin Number 4, 1910.

[6] Institute of Medicine. To Err Is Human: Building a Safer Health System. National Academies
Press, Washington, D.C., 2000.

[7] Elliot Organick. The Multics System: An Examination of Its Structure. MIT Press, Boston,
MA, USA, 1972.

[8] Department of Defense. Trusted Computer System Evaluation Criteria (“Orange Book”).
Technical Report DoD 5200.28-STD, December 26, 1985.

[9] Paul A. Karger and Roger R. Schell. Multics Security Evaluation: Vulnerability Analy-
sis. HQ Electronic Systems Division: Hanscom AFB, MA. URL: http://csrc.nist.gov/
publications/history/karg74.pdf, 1974.

[10] Paul A. Karger and Roger R. Schell. Thirty Years Later: Lessons from the Multics Security
Evaluation. In Proceedings of the 18th Annual Computer Security Applications Conference
(ACSAC), pages 119–126, 2002.

[11] Howard Shrobe and Daniel Adams. Suppose We Got a Do-Over: A Revolution for Secure
Computing. IEEE Security & Privacy, 10(6):36–39, Nov/Dec 2012.

[12] Sean Peisert, Ed Talbot, and Matt Bishop. Turtles All The Way Down: A Clean-Slate, Ground-
Up, First-Principles Approach to Secure Systems. In Proceedings of the 2012 New Security
Paradigms Workshop (NSPW), pages 15–26, Bertinoro, Italy, September 19–21, 2012.

6

[13] Paul C. van Oorschot. Toward Unseating the Unsafe C Programming Language. IEEE Security
& Privacy, 19(2):4–6, Mar/Apr 2021.

[14] Hamed Okhravi. A Cybersecurity Moonshot. IEEE Security & Privacy, 19(3):8–16, May/June
2021.

[15] Kathleen Fisher, John Launchbury, and Raymond Richards. The HACMS Program: Using
Formal Methods to Eliminate Exploitable Bugs. Philosophical Transactions of the Royal So-
ciety A: Mathematical, Physical and Engineering Sciences, 375(2104):20150401, 2017.

[16] Robert N. M. Watson, Jonathan Woodruff, Peter G Neumann, Simon W Moore, Jonathan
Anderson, David Chisnall, Nirav Dave, Brooks Davis, Khilan Gudka, Ben Laurie, Steven J.
Murdoch, Robert Norton, Michael Roe, Stacey Son, and Munraj Vadera. CHERI: A Hybrid
Capability-System Architecture for Scalable Software Compartmentalization. In Proceedings
of the 36th IEEE Symposium on Security and Privacy, pages 20–37, 2015.

[17] Lewis Carroll. Through the Looking-Glass, and What Alice Found There. “The rule is, jam
to-morrow and jam yesterday — but never jam to-day ... It’s jam every other day: to-day isn’t
any other day, you know.”. Macmillan, London, 1872.

[18] Mike Walker. Machine vs. Machine: Lessons from the First Year of Cyber Grand Challenge.
24th USENIX Security Symposium, August 12, 2015.

[19] Mary Ellen Zurko. User-Centered Security: Stepping up to the Grand Challenge. In Proceed-
ings of the 21st Annual Computer Security Applications Conference (ACSAC), 2005.

7

