Status

- Project 1 Back By Friday
- Project 2 Due Friday, Apr. 24, 11:55pm
- My office hours 10am today
Parsers

- Parsers are built from CFGs
- CFGs consist of *terminals* (tokens) and non-*terminals* (rules or production)
- A *production* has a left hand side and a right hand side, separated by an arrow, e.g., $X \rightarrow \alpha\beta$
- Any language that can be described by an RE can be described by a CF language. The opposite is not true.
Derivation Process

1. Start with S, which is the starting non-terminal.

2. Let $S = \alpha$

3. If α is a terminal (incl. empty), stop. Alpha is a string in the CFG.

4. If α is not a terminal, choose a rule with α on the LHS) and replace LHS with RHS.

5. Continue (4) until $X \rightarrow \alpha \cdot \beta$, a

6. α is eventually a string in the CFG. (So is S).
\begin{align*}
E & \rightarrow E + E & \text{Derive a string: } -8 * A \\
E & \rightarrow E * E \\
E & \rightarrow -E \\
E & \rightarrow \text{id} \\
E & \rightarrow \text{num} \\
E & \rightarrow (E)
\end{align*}

\begin{align*}
E & \quad \text{start state} \\
E * E & \quad \text{pick rule, replace LHS with RHS} \\
-E*E & \quad \text{again, pick rule, replace LHS with RHS} \\
-8*E & \quad \text{again, pick rule, replace LHS with RHS} \\
-8*A & \quad \text{done}
\end{align*}
- root is the starting non-terminal
- nodes are non-terminals
- leaves are terminals
- reads in L to R order (depth first) to give string
Ambiguity

• Def.: left-most derivation — during each step (in top-down parsing), substitute the left-most non-terminals

• Def.: a CFG is ambiguous if for some CFG w/string x, there exist:
 • 2 different left-most derivations, or
 • 2 different parse trees for x
Ex.:
\[E \rightarrow E + E \]
\[E \rightarrow E * E \]
\[E \rightarrow \text{num} \]

Two different, valid parse trees

\[2 + 3 * 8 \]
Two Left-Most Derivations

E
E + E
2 + E
2 + E * E
2 + 3 * E
2 + 3 * 8

E
E * E
E + E * E
2 + E * E
2 + 3 * E
2 + 3 * 8

grammar is ambiguous
How do you fix an ambiguous grammar?

- Determine what the language is
- Find the bad string(s)
- For each bad string change the grammar to disallow the derivation
Example

What kind of string is this describing?

\[
\begin{align*}
S & \rightarrow X \\
S & \rightarrow YZ \\
X & \rightarrow aXb \\
X & \rightarrow \varepsilon \\
Y & \rightarrow abY \\
Y & \rightarrow ab \\
Z & \rightarrow a \\
Z & \rightarrow \varepsilon
\end{align*}
\]
Example

What kind of string is this describing?

\[S \rightarrow X \]
\[S \rightarrow YZ \]
\[X \rightarrow aXb \]
\[X \rightarrow \varepsilon \]
\[Y \rightarrow abY \]
\[Y \rightarrow ab \]
\[Z \rightarrow a \]
\[Z \rightarrow \varepsilon \]

\[X = a^n b^n \text{ where } n \geq 0 \]

\[YZ = (ab)^+ a? \]

What is an example of a bad string?
ba — two parse trees
Need to Change Grammar

\[
\begin{align*}
 S & \to X \\
 S & \to YZ \\
 X & \to aXb \\
 X & \to \varepsilon \\
 Y & \to abY \\
 Y & \to ab \\
 Z & \to a \\
 Z & \to \varepsilon
\end{align*}
\]
Incorrect Disambiguation

- Can’t change grammar so that bad strings are now allowed
- Can’t change grammar so that some good strings are now disallowed
Option 1

Change $X = a^n b^n$ where $n \geq 0$
to $X = a^n b^n$ where $n = 0$ or $n \geq 2$ (let YZ take $n = 1$)

Change this:

$X \rightarrow aXb$
$X \rightarrow \varepsilon$

To this:

$X' \rightarrow aabb$ // here’s $n = 2$
$X' \rightarrow aX'b$ // here’s $n > 2$
$X \rightarrow X'$
$X \rightarrow \varepsilon$ // here’s $n = 0$
Option 2

Change $Y = (ab)^+$ to $Y = ab(ab)^+$ so let X take the $n = 1$ case

Change this:

$Y \rightarrow abY$
$Y \rightarrow ab$

To this:

$Y \rightarrow abY$
$Y \rightarrow abab$
Full Grammar With Option 2

\[
\begin{align*}
S & \to X \\
S & \to YZ \quad \text{No longer has “ab” ambiguity} \\
X & \to aXb \quad \text{No longer allows } S \to YZ \to abZ \to aba \\
X & \to \varepsilon \\
Y & \to abY \\
Y & \to abab \quad (\text{used to be } Y \to ab) \\
Z & \to a \\
Z & \to \varepsilon \quad \text{So it is incorrect!}
\end{align*}
\]
Fixing Grammars

• No algorithm for fixing grammars.

• Fixing grammars requires intuition, experimentation and many errors (very frustrating).
Bottom-Up Parsing
Lecture 8
Bottom-Up Parsing

- Also called “LR parsing”
 - L means that tokens are read left to right
 - R means that it constructs a rightmost derivation
Idea

• LR parsing *reduces* a string to the start symbol by inverting productions

• str ← input string of terminals

• repeat
 • Identify β in str such that A → β is a production (i.e., str = α β γ)
 • Replace β by A in str (i.e., str becomes α A γ)
 • until str = S
Important Fact #1

• An LR parser traces a rightmost derivation in reverse.
Shift

- \textit{Shift}: Move \triangleright one place to the right
- Shifts a terminal to the left string

\[E + (\triangleright \text{int}) \Rightarrow E + (\text{int} \triangleright) \]
Reduce

- **Reduce**: Apply an inverse production at the right end of the left string

If $E \rightarrow E + (E)$ is a production, then:

$$E + (E + (E) \quad \Rightarrow \quad E + (E \quad \Rightarrow)$$
The Stack

• Left string can be implemented as a stack

• Top of the stack is the ▷

• Shift pushes a terminal on the stack

• Reduce pops 0 or more symbols off of the stack (production rhs) and pushes a non-termianl on the stack (production lhs)
When to Shift vs. Reduce?

- Decide based on the left string (the stack)
- Idea: use a finite automaton (DFA) to decide when to shift or reduce
 - The DFA input is the stack
 - The language consists of terminals and non-terminals
- We run the DFA on the stack and we examine the resulting state \(\mathsf{X} \) and the token \(\mathsf{T} \) after △
 - If \(\mathsf{X} \) has a transition labeled \(\mathsf{T} \) then \textit{shift}
 - If \(\mathsf{X} \) is labeled with “\(\mathsf{A} \rightarrow \mathsf{B} \) on \(\mathsf{T} \)” then \textit{reduce}
Representing the DFA

- Parsers represent the DFA as a 2D table.
- Recall table-driven lexing
- Rows correspond to DFA states
- Columns correspond to terminals and non-terminals
- Typically columns are split into:
 - Those for terminals: action table
 - Those for non-terminals: goto table
Example Decision Table

<table>
<thead>
<tr>
<th></th>
<th>v</th>
<th>c</th>
<th>i</th>
<th>m</th>
<th>r</th>
<th>$</th>
<th>S</th>
<th>D</th>
<th>L</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>s2</td>
<td></td>
<td></td>
<td></td>
<td>r1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>acc</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>s4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>s5</td>
<td>s6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>r3</td>
<td>r3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>s8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>s9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>r2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>r5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>r4</td>
<td>r4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
How is the DFA Constructed?

- The stack describes the “context” of the parse
 - What non-terminal we are looking for
 - What production rhs we are looking for
 - What we have seen so far from the rhs
- Each DFA state describes several such contexts
 - E.g., when we are looking for non-terminal E, we might be looking either for an int or an E+(E) rhs
LR(1) Items

- An **LR(1) item** is a pair, e.g.,:
 \[X \rightarrow \alpha \cdot \beta, a \]
- \(X \rightarrow \alpha \beta \) is a production
- \(a \) is a terminal (the lookahead terminal)
- LR(1) means 1 lookahead terminal
- \([X \rightarrow \alpha \cdot \beta, a] \) describes a context of the parser
 - We are trying to find an \(X \) followed by an \(a \), and
 - We already have \(\alpha \) on the top of the stack
 - Thus we need to see a prefix derived from \(\beta a \)
Note

• Symbol “•” separates stack from rest of input: \(\alpha \cdot \gamma \)
 where \(\alpha \) is the stack and \(\gamma \) is the remaining string of terminals.

• In LR(1) items, • is used to mark a prefix of a production RHS:
 \[X \rightarrow \alpha \cdot \beta, a \]
 • Here, \(\beta \) might contain non-terminals as well.

• In both cases, the stack is on the left.
LR(1) Items

- In context containing
 \[E \rightarrow E + \cdot (E), + \]
- If ‘(‘ follows then we can perform a shift to context containing
 \[E \rightarrow E + (\cdot E), + \]
- In context containing
 \[E \rightarrow E + (E)\cdot, + \]
- We can perform a reduction with \[E \rightarrow E + (E) \]
- But only if a + follows
LR(1) Items

• Consider a context with the item
 \[E \rightarrow E + (\cdot E), + \]
• We expect a string derived from \[E \) +
• There are two productions for \(E \)
 \[E \rightarrow E + (E) \quad \text{and} \quad E \rightarrow \text{int} \]
• We describe this by extending the context with two more items:
 \[E \rightarrow \cdot \text{int},) \]
 \[E \rightarrow \cdot E + (E),) \]
First and Follows

- Consider the state $S \rightarrow \beta \cdot A \gamma$
- We’re trying to match the string $\beta b \delta$
- Suppose that b is the next token.
- Either:
 - $A \rightarrow \alpha$, if b can start a string derived from α
 - We say that $b \in \text{First}(\alpha)$
 - Or, the expansion of A is empty and b belongs to an expansion of γ (e.g., $\gamma \rightarrow b \omega$).
 - b can appear after A in a derivation of the form $S \rightarrow \beta A b \omega$
 - We say that $b \in \text{Follow}(A)$ in this case.
What productions can we use?

- Consider the state $S \rightarrow \beta \cdot A\gamma$
- We’re trying to match the string $\beta b\delta$
 - The expansion of A is empty and b belongs to an expansion of γ (e.g., $\gamma \rightarrow b\omega$).
 - b can appear after A in a derivation of the form $S \rightarrow \cdot \beta Ab\omega$
 - We say that $b \in \text{Follow}(A)$ in this case.

- **Can use as a production:**
 - $A \rightarrow \alpha$ can be used if α can expand to ε
 - We say that $\varepsilon \rightarrow \text{First}(A)$ in this case
Computing First Sets

- Definition: First(X) = \{ b | X \rightarrow b\alpha \} \cup \{ \varepsilon | X \rightarrow \varepsilon \}
- First (b) = \{ b \}
- For all productions X \rightarrow A_1 ... A_n
 - Add First (A_1) - \{ \varepsilon \} to First(X). Stop if \varepsilon \notin First(A_1)
 - ...
 - Add First (A_n) - \{ \varepsilon \} to First(X). Stop if \varepsilon \notin First(A_n)
 - Add \varepsilon to First(X) (ignore A_i if it is X)
First sets Example

• Grammar:
 \[E \rightarrow TX \]
 \[T \rightarrow (E) \mid \text{int } Y \]
 \[X \rightarrow + E \mid \varepsilon \]
 \[Y \rightarrow *T \mid \varepsilon \]

• First sets
 \[\text{First } (()) = \{ () \} \]
 \[\text{First } ()) = \{) \} \}
 \[\text{First } (\text{int }) = \{ \text{int } \} \]
 \[\text{First } (+) = \{ + \} \]
 \[\text{First } (*) = \{ * \} \]
 \[\text{First } (T) = \{ \text{int }, () \} \]
 \[\text{First } (E) = \{ \text{int }, () \} \]
 \[\text{First } (X) = \{ +, \varepsilon \} \]
 \[\text{First } (Y) = \{ *, \varepsilon \} \]
Computing *Follow* Sets

- Definition: \(\text{Follow}(X) = \{ b \mid S \rightarrow \beta X b \omega \} \)
- Compute the First sets for all non-terminals first
- Add $ to \text{Follow}(S)$ (if S is the start non-terminal)
- For all productions \(Y \rightarrow X A_1 \ldots A_n \)
 - Add First (\(A_1 \)) - \{\(\varepsilon \)\} to \text{Follow}(X). Stop if \(\varepsilon \not\in \text{First}(A_1) \)
 - ...
 - Add First (\(A_n \)) - \{\(\varepsilon \)\} to \text{Follow}(X). Stop if \(\varepsilon \not\in \text{First}(A_n) \)
- Add \text{Follow}(Y) to \text{Follow}(X)
Follow sets Example

• Grammar:

\[
E \rightarrow TX \\
T \rightarrow (E) \mid \text{int } Y \\
X \rightarrow + E \mid \varepsilon \\
Y \rightarrow *T \mid \varepsilon
\]

• First sets

Follow (+) = \{ \text{int, (}) \} \\
Follow (()) = \{ \text{int, (}) \} \\
Follow (X) = \{ \$,) \} \\
Follow ()) = \{ +,), $ \} \\
Follow (\text{int }) = \{ *, +,), $ \}

Follow (*) = \{ \text{int, (}) \} \\
Follow (E) = \{), $ \} \\
Follow (T) = \{ +,), $ \} \\
Follow (Y) = \{ +,), $ \}
LR(1) Items

- Consider a context with the item
 \[E \rightarrow E + (\cdot E), + \]
- We expect a string derived from \(E \) \() \) \(+ \)
- There are two productions for \(E \)
 \[E \rightarrow E + (E) \quad \text{and} \quad E \rightarrow \text{int} \]
- We describe this by extending the context with two more items:
 \[E \rightarrow \cdot \text{int},) \]
 \[E \rightarrow \cdot E + (E) ,) \]
The Closure Operation

• The operation of extending the context with items is called the closure operation

\[
\text{Closure}(\text{Items}) = \\
\text{repeat} \\
\text{for each } [X \rightarrow \alpha \cdot \beta, a] \text{ in Items} \\
\text{for each production } Y \rightarrow \gamma \\
\text{for each } b \in \text{First}(\beta a) \\
\text{add } [Y \rightarrow \cdot \gamma, b] \text{ to Items} \\
\text{until Items is unchanged}
\]
Construct the Parsing DFA

• Construct the start context: \(\text{Closure} \{ S \rightarrow \cdot E, \$ \} \)

\[
\begin{align*}
S & \rightarrow \cdot E, \$ \\
E & \rightarrow \cdot E+(E), \$ \\
E & \rightarrow \cdot \text{int}, \$
\end{align*}
\]

• We abbreviate as:

\[
\begin{align*}
S & \rightarrow \cdot E, \$
E & \rightarrow \cdot E+(E), $/+
E & \rightarrow \cdot \text{int}, $, $/+ \\
E & \rightarrow \cdot \text{int}, +
\end{align*}
\]
Construct the Parsing DFA

• A DFA state is a *closed* set of LR(1) items

• This means that we performed Closure

• The start state contains \([S \rightarrow \cdot E, $]\)

• A state that contains \([X \rightarrow \alpha \cdot, b]\) is labeled with “reduce with \(X \rightarrow \alpha\) on \(b\)”

• And now the transitions...
DFA Transitions

• A state “State” that contains $[X \rightarrow \alpha \cdot \gamma \beta, b]$ has a transition labeled y to a state that contains the items “Transition(State, γ)”
 • γ can be a terminal or a non-terminal

Transition(State, γ)

Items $\leftarrow \emptyset$

for each $[X \rightarrow \alpha \cdot \gamma \beta, b] \in \text{State}$

add $[X \rightarrow \alpha \gamma \cdot \beta, b]$ to Items

return Closure(Items)
We have defined several functions to help us on the way:

- closure \((s)\) - where \(s\) is a state
- goto \((S, X)\) where \(S\) is a set of LR items
- First \((X)\)
- Follows \((X)\)

...and for all cases \(X\) is a grammar symbol (either terminal or non-terminal)
Algorithms

- We have defined several algorithms which take us from the CFG to the decision table and the process which walks us through the parsing.
 - CFG \rightarrow DFA
 - Fill in the action/goto entries in decision table
 - Using the DFA, a stack and action/goto tables, parse a grammar.
Example Grammar

S \rightarrow Xb
X \rightarrow YZ
Y \rightarrow aa
Z \rightarrow cS
Z \rightarrow \varepsilon
CFG \rightarrow DFA

- Start by adding a new state to the grammar:

 \[S' \rightarrow \varepsilon \cdot S \]

 Take the new state, add closure to get the new start state, which is state 1.
State 0: Closure of S

$S' \rightarrow \cdot S$

$S \rightarrow \cdot X b$
State 0: Closure of X

\[
S' \rightarrow \bullet S \\
S \rightarrow \bullet Xb \\
X \rightarrow \bullet YZ
\]
State 0: Closure of Y

\[S' \rightarrow \cdot S \]
\[S \rightarrow \cdot Xb \]
\[X \rightarrow \cdot YZ \]
\[Y \rightarrow \cdot aa \]
Loop through the states

- State 0
- mark it
- go through all the grammar symbols (S, X, Y, Z, a, b, c). If the state expects any of these symbols (i.e., the symbol precedes a “•”), add a transition.
Looping through the states: State 0

State 0:
S' \rightarrow •S
S \rightarrow •Xb
X \rightarrow •YZ
Y \rightarrow •aa

On “S” get:
state 1: S' \rightarrow S•

On “X” get:
state 2: S \rightarrow X•b

On “Y” get:
state 3: X \rightarrow Y•Z

don’t forget closure!
Looping through the states: State 0

State 0:
S’ → •S
S → •Xb
X → •YZ
Y → •aa

On “S” get:
state 1: S’ → S•

On “X” get:
state 2: S → X•b

On “Y” get:
state 3: X → Y•Z
 Z → •cS
 Z → • ε
Looping through the states: State 0

State 0:
S' → •S
S → •Xb
X → •YZ
Y → •aa

On “a” get:
state 4: Y → a•a

On “b” or “c” get:
nothing (error)
Finishing the Decision Table

• Keep looping through all the other states, as you continue to produce them.

• What have you done? You’ve created the outline of a decision table with all of your states.

• But the decision table is empty.
Fill in actions/gotos

• Fill in shift actions (terminal transitions)
 • derive from the DFA. Look at the DFA. On state N, on input x, shift to state M.
 • action(N,x) = sM

• Fill in goto actions (terminal transitions)
 • derive from the DFA. In state R, on input Y, shift to state S
 • goto(R,Y) = S
Fill in accept state

- In state T, given this situation:

 $S' \rightarrow S$

 - We get action $(T,\$) = accept$
<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>$</th>
<th>S</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>s4</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>acc</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>s8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s4</td>
<td></td>
<td></td>
<td></td>
<td>9</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Monday, April 27, 2009
What about reduce?

• An LR parser does a right-most derivation, which means the derivation is done in reverse.

• Given state $X \rightarrow abc$

• …the parser will recognize a reduce if the next input can "follow" X.
Matching Patterns with Productions

• Back to the grammar, we add $ to $':

\[
\begin{align*}
S' & \rightarrow S $ \\
S & \rightarrow X \\
X & \rightarrow Y \\
Y & \rightarrow Z
\end{align*}
\]
Matching Patterns with Productions

- We start with $S' \rightarrow S$
- pattern: non terminal on end, add $\text{Follows}(S')$ to $\text{Follows}(S)$

$S' \ $ $
S \ $ $
X$
Y
Z
Matching Patterns with Productions

- We start with $S \rightarrow Xb$
- pattern: terminal following non terminal, add b to $\text{Follows}(X)$

S' $
S $
X b
Y
Z
Matching Patterns with Productions

- Looking at $X \rightarrow YZ$
- pattern: non-terminal (Z) at end, add $\text{Follows}(X)$ to $\text{Follows}(Z)$
- pattern: non-terminal (Y) followed by non-terminal (Z) going to empty, add $\text{Follows}(X)$ to $\text{Follows}(Y)$ (when Z is empty). Also, add $\text{First}(Z)$ to $\text{Follows}(Y)$, where $\text{First}(Z) = c$
Matching Patterns with Productions

\[S' \rightarrow S \$
\[S \rightarrow S \$
\[X \rightarrow b
\[Y \rightarrow b, c
\[Z \rightarrow b \]
Okay, given this chart, we add actions. Look back to your states that you created from earlier. We only care about the ones which look like: $X \rightarrow \alpha^*$

- State 1 is $S' \rightarrow S\cdot$
- State 3 is $Z \rightarrow \cdot\varepsilon$
- State 5 is $S \rightarrow Xb\cdot$
- State 6 is $Z \rightarrow YZ\cdot$
- State 8 is $Y \rightarrow aa\cdot$
- State 9 is $Z \rightarrow cS\cdot$