Optimal design of spatial distribution
networks
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The problem

Suppose we are charged with choosing the sites of p facilities
(hospitals, post offices, supermarkets etc.) within a country or
province.

Furthermore, suppose we are given the population density p(r) in
this region.

Where do we place the facilities such that the average distance
from a person’s home to the nearest facility is minimized?

Often the facilities are interconnected to form networks (e.g. air-
ports, warehouses). How do we optimally connect the facilities to
optimize performance of the system as a whole?



Red dots: facilities

In most countries, population density is highly non-uniform. —
A uniform distribution of facilities would be a poor choice:
it gains us little to build a lot of facilities in sparsely populated areas.



An apparently more sensible choice:
distribute facilities in proportion to population density. —
A region with twice as many people has twice as many facilities.
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Do we gain anything by having closely spaced facilities in the highly
populated areas?

'T'here the second-closest facility is not much farther than the closest.
—— One of them might be removed with little penalty?
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The objective function f

We wish to distribute p facilities over an area A such that

er,-vrp) = [ oo

is minimized. Here {ry, ..

S Tpt

}\.

min |r — r;| d°r
ic{l,..p}

are the facility positions and p(r) the
population density.
f is proportional to the mean dis-
tance that a person will have to travel
to reach their nearest facility.

T~ facility at r,

—— min |r-r |
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Computational complexity

Finding the exact minimum of

f(rl,...,rp)—/p(r) min |r —r;| d°r
A

ic{l,...p}

is known as the p-median problem. It has been shown to be NP-hard, so
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in practice we must rely on approx-
imate numerical optimization or ap-
proximate analytical treatments.

One way to obtain an analytical re-
sult is by analyzing the Vorono: tes-

sellation.

T~ min |r-r |
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Scaling analysis

Define s(r) = the area of the Voronoi cell to which the point r belongs.
—— In two dimensions:

Distance from a point r to the nearest facility = g[s(r)]"/?,

where g is a geometric factor of order 1.

f—/p(r) min |r —r;| d%r ~
A

ie{1,...p}
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Scaling analysis

Since there are p facilities: / s(r)]"t d%r = p.
A

Optimizing f subject to this constraint gives

where « is a Lagrange multiplier.

—  s(r) = [2a/gp(r)]*?.

a can be evaluated by substituting into Eq. (1):

L p(r)?*
S0 TR e

where D(r) = |s (r)]_l is the density of the facilities.

53?1:-) {QLP(I‘)[S(I‘)}W d*r — C}:(P /A[S(I‘)}l dz?‘ﬂ =0



What does this mean?

D(r) o< p(r)** (1)

If facilities are distributed optimally, their density should increase with
population density, but it should do so slower than linearly, as a power
law with exponent %

Equation (1) is a compromise between

e apopulation-proportional allocation, D(r) o< p(r)!, (2)
and
e aspatially homogeneous distribution, D(r) o p(r)°. (3)

(1) — similar to (2) — places most facilities in the densely populated
areas where most people live.

But (1) — similar to (3) — still proves reasonable service to those in
sparsely populated areas.



What does this mean?

Our calculation can also be carried out in general dimension d,
D x p#t4+1) « (area occupied by one person) % (d+1), (1)

In plant ecology, the population density of a species, D, scales with the
plant size as
D o size /%, (2)

Equation (2) is the result of competition among plants for spatially
limited resources and optimal use of these resources (West et al., Nature,

1998).

Note that plants are three-dimensional objects, so the scaling exponent
in Eq. (1) and (2) are equal.



Numerical optimization
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FIG. 2: Facility density D from Fig. 1 versus population den-
sity p on a log-log plot. A least-squares linear fit to the data
gives a slope of 0.66 (solid line, r* = 0.94).



Is there a geometric solution?

If we neglect finite-size effects, optimally located facilities in a uniformly
populated space have hexagonal catchment areas.

Is there a map projection that will transform the pattern of facilities for
a nonuniform population to a similarly regular structure?



Cartograms

Facility locations depend on the population density. —

If we want the facility density to appear homogeneous, we need a pro-
jection which corrects for variations in the population density.

Such projections are called cartograms.

A cartogram rescales areas such that
e densely populated regions become larger and

e sparsely populated regions become smaller.



Cartograms
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Figure 35. An approximation of a Christaller solution applied to an
area of disuniform rurzl population. (Some errors)
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William Bunge: Patterns of Location (1964)

Figure 3§ Map transformed into uniform density
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A few definitions

Consider a situation in which the facilities form the vertices of a network

and connections between them form the edges.

-‘-_-_-___-"‘-I- T
vVertex

-y—— edge

®

If there are p facilities in the network, the adjacency matriz A isa px p
matrix with elements

A 1 if there is an edge between facilities ¢ and j
Aij = |
0 otherwise.



The efficiency of a network of facilities

The efficiency of a network, as we will consider it here, depends on two
factors.

e On the one hand, the smaller the sum of the lengths of all edges,
the cheaper the network is to construct and maintain.

e On the other hand, the shorter the distances through the network
between vertices, the faster the network can perform its intended
function (e.g. transportation of passengers between vertices or
distribution of mail or cargo).



The efficiency of a network of facilities

These two objectives generally oppose each other.

e A network with few and short connections will
not provide many direct links between distant
points, and paths through the network will tend

to be circuitous.

e A network with a large number of direct links is
usually expensive to build and operate.

The optimal solution lies somewhere between these extremes.



Construction cost

Let us define [;; to be the shortest geometric distance between two ver-
tices ¢ and j measured along the edges in the network. For example,

A
o
B
© lap = laB + lpc +lcp,
C ZEF — OQ.
@F

D

E
The total length of all edges is equal to 17" = Z Aijlij.

i<

We assume the cost of building and maintaining the network to be pro-
portional to 1.



Travel cost

The cost of traveling or shipping a commodity from vertex i to vertex j
depends on

e the distance [;; and

e the amount of traffic w;;.

We assume that w;; is proportional to the populations in the Voronoi
cells V; and Vj, so that

wij = / p(r)d*r / p(x")d*r’
v v,

J
In appropriate units.

The total travel cost in our model is then Z = Z wiili;.
1<J



Total network cost

Construction cost 1" = E A;ili;, travel cost Z = E wiili;.
1<J 1<

The total cost of running the network is proportional to
C=T+n~Z,

where v > 0 measures the relative importance of the two terms.

The best network is the one that minimizes the total cost C' for given
facility locations ry,...,r, and given 7.



The meaning of y

total cost C =1 +~Z2

v — 0: The total cost is = T" (geometric
length of all edges).
— minimum spanning tree

v — oo: The total cost is approximately oc £
(sum of effective distances between vertices).
—— fully connected network

For intermediate v: Non-trivial (presumably NP-complete) optimization
problem.



200 random vertex positions, periodic boundary conditions, and setting

all w;; = const.

v=0.0002 y=0.002

S
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[ total network
6000 length T
- !!?~I ~ sum of all
ﬁlﬁmuj i+i_ distances Z
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sum of all distances Z

It is possible to
achieve a small
travel cost 1" for
a construction cost
Z not much higher
than that of the
minimum span-
ning tree.



What is a realistic value for y?

For simplicity’s sake, let us normalize the length scale by setting the
average “crow flies” distance between a vertex and its nearest neighbor
equal to 1.

We can make an order of magnitude estimate as follows.

The sum T'= ) ;.

of edges in the network.

A;;l;; has m nonzero terms, where m is the number

Most real networks are sparse, with m = O(p), and edges are of typical
length 1 in our length scale, so that 7" = O(p).



What is a realistic value for y?

The sum Z = > _. wj;l;; contains zp(p 1) = O(p?) nonzero terms.

1<

If P is the total population, the weights w;; have typical value (P/p)?.
Thus Z = O(P?).

We assume that investments 1n maintenance and travel costs are of the
same order of magnitude: 1" = O(p) ~ ~Z.

In our examples p = 200 and P = 2.8 x 10° for the U.S. which leads to
v a2 107,
)



Optimal networks of optimally located facilities

The optimal network design problem then consists of two parts.
First, we distribute p facilities on the map by solving the p-median

problem.




Optimal networks of optimally located facilities

The optimal network design problem then consists of two parts.
First, we distribute p facilities on the map by solving the p-median

problem.
Then we find the network minimizing the total cost C.




Optimal networks of optimally located facilities

The optimal network design problem then consists of two parts.
First, we distribute p facilities on the map by solving the p-median

problem.
Then we find the network minimizing the total cost C.




Different routing strategies

There is another complicating factor. We have assumed that travel costs

are proportional to geometric distances.

In some networks, users may not choose the geometrically shortest path,

especially if it has many edges.

Examples:
e Airline passengers want to limit the number of stopovers. J
e Internet packets arrive more quickly and reliably if the number of

routers along the way is small.



Different routing strategies

We can account for such situations by using a more flexible notion of
distance. We assign to each pair of adjacent vertices an effective length
(travel cost)

lij=(1—0);; +96, 0<6<1.

The travel cost is then Z = ). <j w.l-jfij.

The parameter 0 determines the user’s preference for measuring
distance in terms of kilometers or edges:
e 0 = 0: geometric distance

e 0 = 1: number of edges (graph distance)



Different routing strategies
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How realistic is our model?

Is there a 2/3 power law for real facilities?

G. Edward Stephan, Science (1977):

Territorial Division: The Least-Time Constraint
Behind the Formation of Subnational Boundaries

Such an analysis hzs been carried out
tor 98 modern nztions ¢). While the
siopes for individual nations vary some-
what around the expected —2/3 value
{and in some cases the number of subdivi-
siens within 2 nation was too small to per-
mit adequate statisticai test), the aggre-
gated 1764 politicai subdivisions did vield
a regression siope between log-size and
log-density of —(0.66, aresult which very
clearty conforms tothe theoretical expec-
latondeveloped here.



G. Edward Stephan, J. of Reg. Sci. (1988)

Service Bstablishmenta L] r* I g @ ] b, g
1 Alcoholic Beverages, p 082 077 09 013 114 031 087 077
2 Aleoholic Beverages 093 097 081 003 084 007 097 097
3 Bicycle Shops, p 097 082 117 019 145 048 081 056
4 Bil:‘}'l:l& Shops .B8 0.897 .86 .08 0593 017 0.92 na7
§  Collection Agencies, p 080 09 082 022 106 056 078 096
B Collection Agencies 0.76 0492 (.68 0.13 .74 0,29 08T 095
7 Drive-in Theaters, p 073 09 068 022 087 057 078 091
8 . Drive-in Theaters 087 087 075 004 078 009 09 090
9  Motion Pictures, p 081 09 076 015 089 035 08 097
10 Motion Pictures 085 084 073 004 077 009 086 097
11 Musical Instruments, p 089 097 083 014 108 033 086 097
12 Musical Instruments 081 09 086 003 08 007 087 097
13 Secand-hand Stares, @ 086 nAd 104 012 138 NET OBR  NOE
14  Second-hand Stores 087 082 083 007 080 018 093 0982
15 Gas Stations, p 087 099 085 011 09 024 08 089
16  Gas Stations, d 093 05 082 005 097 011 08 099
17 Gas Stations 098 0,54 0.594 0.03 0.97 I 0.87 .54
18 Farm Supplies, p 082 060 075 048 143 184 052 064
18 Farm Supplies 088 090 088 008 Q085 020 091 090 .
20  Mobile Homs Dealers,p 066 086 066 034 099 102 086 0.86 > Most commerc:lal
91  Mobile Home Dealers 096 094 092 001 093 002 09 094 e
22 Appareland Accessories  0.95 097 094 003 097 007 097 097 facilities follow power laws
23 Auto Accessories 1.00 099 09 000 089 000 100 099
24  Bookstores 081 093 072 004 076 009 088 095 .
3 BuldmeMuerds 098 0 o0s om 1m oo ow oee  With exponents closer to 1
26  Cameras/Photography 089 094 085 006 091 013 094 094
97  Department Stores 082 095 076 009 085 019 091 09 than to 2/ 3
98  Dry Cleaners 097 099 09 002 098 004 098 099
99 Electrical Supplies 076 091 0687 009 075 021 091 092
an Furniture Storps 0.83 .87 .52 (.06 0.97 .12 084 097
| Groeery Stores 09 084 088 002 081 005 098 0.84
32  Hardware Stores 0896 098 09 003 100 007 087 098
33 Pharmacies .95 0,96 .50 ol .81 (.01 (50 0.97
34 Plumbing and Heating 07 o092 072 016 O0BS 037 084 092
35  Radio and TV Stores 093 097 08T 000 088 001 100 097
36  Record Stores 087 087 081 005 08 011 095 098
37  Restaurants 089 098 085 006 091 014 084 098
38  Stationery Stores 086 088°_083 000 0% 001 100 098
33  Tires and Batteries G898 GS8 088 B0 162 GO5 88T 48R
40 ‘'Travel Agencies 090 087 08 004 090 008 09 097
41  Used-car Dealers 09 09 092 000 082 000 100 095
432 Variety Btores (.88 087 1. K& 0049 0,95 0.21 081 097
43 Total Retail Stores 094 090 082 005 097 011 09 099
44  Baptist Churches, o 088 099 0B 010 097 022 080 099
46 Catholic Churches, a 070 093 084 021 081 052 079 094
46  Newspapers 069 088 062 023 08 058 077 089
47  Hospitals, p 0685 095 068 032 099 092 088 035
48 1820 County Seats, r (.64 . HE (.64 (.38 1.04) 1.14 5 (L85
49 1970 County Seats, r 055 074 059 048 114 184 052 074
50 1970 County Seats, p 043 055 039 054 084 233 046 0056

a1 Physicians, p 1.09 .98 110 —0.08 102 =016 108 088



A model for commercial facilities

T'he Voronor game is a simple model for competitive facility location.

(a) (b) (c)

(a) Player A first places a fixed number of facilities (diamonds).

(b) Then player B, knowing A’s decision, places her facilities (circles).

(c) The square is tessellated into Voronoi cells and each player receives
the population in her cells as payoff.



Conclusion

sWe have presented a scaling analysfs ®\n problem, a model for
the optimal location of facilities.

» The density of facilities grows as population density to the 2/3 power.
* Cartograms can be used to verify this relation.

» We have studied a model of optimal spatial network design with tunable
parameters for the cost functions involved.

* Depending on the parameters we find structures ranging from decentralized
to hub-and-spoke networks.

* We mentioned limitations and extensions of our model.



