Problem Set 4 – Due Thursday, October 25, 2012

Problem 1. Let \(\alpha \) be a regular expression of length \(n \).

(a) Using procedures shown in class, if we convert \(\alpha \) into a regular expression \(\beta \) such that \(L(\beta) = \overline{L(\alpha)} \), how long might \(\beta \) be? Give a reasonably tight upperbound.

(b)* Can you define an infinite family of regular expressions \(\{\alpha_n\} \), \(|\alpha_n| \in O(n) \), but where the shortest regular expression for \(\overline{L(\alpha_n)} \) will have length \(\Omega(2^n) \)?

Problem 2. Using the pumping lemma, show that the following languages are not regular.

(a) \(L = \{www : w \in \{a,b\}^*\} \).

(b) \(L = \{a^{2^n} : n \geq 0\} \).

(c) \(L = \{0^m1^m0^m : m,n \geq 0\} \).

Problem 3. Define \(A = \{x \in \{a,b,\#\}^* : x \text{ contains an equal number of } a\text{'s and } b\text{'s or } x \text{ contains consecutive } \#\text{s or consecutive letters}\} \).

(a) Can you use the pumping lemma to prove that \(A \) is not regular? Explain.

(b) Prove that \(A \) is not regular.

Problem 4. Are the following statements true or false? Either prove the statement or give a simple counter-example.

(a) If \(L \cup L' \) is regular then \(L \) and \(L' \) are regular.

(b) If \(L^* \) is regular then \(L \) is regular.

(c) If \(LL' \) is regular then \(L \) and \(L' \) are regular.

(d) If \(L \) and \(L' \) agree on all but a finite number of strings, then one is regular iff the other is regular.

(e) If \(R \) is regular, \(L \) is not regular, and \(L \) and \(R \) are disjoint, then \(L \cup R \) is not regular.

(f) If \(L \) differs from a non-regular language \(A \) by a finite number of strings \(F \), then \(L \) itself is not regular.

Problem 5. Carefully describe an algorithm to answer the following question: given a regular expression \(\alpha \), is \(L(\alpha) = (L(\alpha))^R \)? What is the asymptotic running time of your algorithm?

Problem 6. For any language \(L \) let
\[F(L) = \{w \in L \mid \text{no proper prefix of } w \text{ is a member of } L\} \]
Prove or disprove: the regular languages are closed under \(F \).

2This problem is intended for, at most, the top students. If you can find an elementary solution without consulting the literature, please give it directly to Prof. Rogaway.