Quiz 2

Your name:

Think. Be careful, clear, and precise.

1. Complete the following narrative, following the conventions of lecture and your text.

 A **DFA** was defined as a five-tuple \(M = (Q, \Sigma, \delta, q_0, F) \) where \(Q \) is a finite set, \(\Sigma \) is an alphabet, \(q_0 \in Q \), \(F \subseteq Q \), and \(\delta : Q \times \Sigma \to Q \).

 To define an **NFA** \(M' \) we modified the conventions above to say that an NFA is a 5-tuple \(M = (Q, \Sigma, \delta, q_0, F) \) where \(Q, \Sigma, q_0, F \) were as before, but now \(\delta \) has a domain of \(Q \) and range \(Q \).

 We showed that DFAs and NFAs accept the same class of languages. For the “easy” direction of this, we said that, informally, every DFA \(M = (Q, \Sigma, \delta, q_0, F) \) is an NFA. But that’s not formally true, because the transition functions have different signatures. So, formally, given a DFA \(M = (Q, \Sigma, \delta, q_0, F) \) you need to construct an NFA \(M' = (Q, \Sigma, \delta', q_0, F) \), where \(L(M') = L(M) \), by saying that \(\delta'(q, a) = \) when \(a \in \Sigma \), and \(\delta'(q, \varepsilon) = \) .

 For the nontrivial direction, we are given an NFA \(M = (Q, \Sigma, \delta, q_0, F) \). We saw how to eliminate the \(\varepsilon \)-arrows, so we can assume, without loss of generality, that \(\delta(q, \varepsilon) = \emptyset \) for all \(q \in Q \). Construct from \(M \) a DFA \(M' = (Q', \Sigma, \delta', q'_0, F') \) where \(Q' = \) and, additionally, \(\delta'(S, a) = \) (for \(S \in Q' \), \(a \in \Sigma \), \(q'_0 = \{q_0\} \), and, \(F' = \))

2. You are given a first DFA \(M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1) \) with \(|Q_1| = 10 \) states, \(|F_1| = 5 \) of them final. You are given a second DFA \(M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2) \) with \(|Q_2| = 10 \) states, \(|F_2| = 5 \) of them final. Suppose you use the product construction to make a DFA \(M = (Q, \Sigma, \delta, s, F) \) for \(L(M_1) \cup L(M_2) \). It will have \(|Q| = \) states and \(|F| = \) of them will be final.

3. Similarly, suppose you mindlessly convert \(0 \cup 10^* \) into an NFA \(M \) using the procedures shown in class and in the book. Then \(M \) will have states.

4. Suppose \(L \subseteq \Sigma^* \) is accepted by an \(n \)-state DFA. For any pair of strings \(x, y \in \Sigma^* \), say \(x \sim y \) if for every \(z \in \Sigma^* \), \(xz \in L \iff yz \in L \). Say something interesting about the number of equivalence classes, \(m \), of this relation.

Please turn the page over!
5. Circle the correct answer. Missing answers will be treated as wrong, so if you don’t know an answer, please guess.

(a) **True** or **False**: There exists a function \(f : \mathbb{N} \rightarrow \mathbb{N} \) such that no function \(F : \mathbb{N} \rightarrow \mathbb{N} \) that upperbounds it\(^1\) can be computed.

(b) **True** or **False**: If \(M = (Q, \Sigma, \delta, q_0, F) \) is a DFA and \(F = Q \) then \(L(M) = \Sigma^* \).

(c) **True** or **False**: If \(M = (Q, \Sigma, \delta, q_0, F) \) is an NFA and \(F = Q \) then \(L(M) = \Sigma^* \).

(d) **True** or **False**: If \(A \) and \(B \) are regular then so is \(A \cap B \).

(e) **True** or **False**: If \(L^* \) is regular then \(L \) is regular.

(f) **True** or **False**: If \(L \) is finite then \(L \) is regular.

(g) **True** or **False**: Every subset of a regular language is regular.

(h) **True** or **False**: A regular expression is a string.

(i) **True** or **False**: We have seen that the pumping lemma is a useful tool for proving languages regular.

(j) **True** or **False**: An efficient procedure\(^2\) is known that takes a regular expression \(\alpha \) and a word \(w \) and decides if \(w \in L(\alpha) \).

\(^1\) \(F \) upperbounds \(f \) if \(F(x) \geq f(x) \) for all \(x \).

\(^2\) Eg, linear, quadratic, or cubic time in \(|\alpha| + |w|\).