Rice’s Theorem

Rice’s theorem helps explain one aspect of the pervasiveness of undecidability. Here is the theorem and its proof, following the needed definition.

A **property of languages** is a predicate \(P : \mathcal{P}(\Sigma^*) \rightarrow \{\text{false}, \text{true}\} \) for some alphabet \(\Sigma \). That is, the input to \(P \) is a language and the output is a truth value. The value \(P(L) = \text{true} \) (we can write “\(P(L) \)”) means that \(L \) has the property \(P \); the value \(P(L) = \text{false} \) (we can write “\(P(L) \)”) means that \(L \) does not have property \(P \). Example properties are: is finite, is infinite, is regular, is r.e., contains the empty string, contains the string 1011, contains some palindrome, contains only palindromes.

A **nontrivial property of r.e. languages** is a property of languages \(P \) such that \(P(L_0) \) for some r.e. language \(L_0 \) and \(P(L_1) \) for some r.e. language \(L_1 \). In English, some r.e. language has the property and some r.e. language does not. All the example properties we listed above are nontrivial with the exception of “is r.e.”.

Theorem [Rice]: If \(P \) is a nontrivial property of r.e. languages then

\[
L_P = \{\langle M \rangle : P(L(M))\}
\]

is undecidable. More specifically, (1) if \(P(\emptyset) \) then \(L_P \) is not r.e., and (2) if \(\overline{P(\emptyset)} \) then \(L_P \) is not co-r.e..

Proof: We prove the second claim; the first is similar. So we are assuming that \(\emptyset \) does not have property \(P \): \(P(\emptyset) = \text{false} \). We show \(A_{\text{TM}} \leq_m L_P \). To show this, we must exhibit a Turing computable function \(f \) for which \(\langle M' \rangle = f(\langle M, w \rangle) \) is a machine accepting a language with property \(P \) iff \(M \) accepts \(w \). Let the behavior of \(M' \) on input \(x \) to be:

- Run \(M \) on \(w \).
 - If \(M \) rejects, reject.
 - Run \(M_1 \) on \(x \) where \(M_1 \) is a (fixed) machine for which \(P(\langle M_1 \rangle) = 1 \). We know such an \(M_1 \) exists because \(P \) is a nontrivial property of r.e. languages.
 - If \(M_1 \) accepts, accept; if \(M_1 \) rejects, reject.”

Clearly \(M' \) is Turing computable from \(M \) and \(w \). Observe that

- (1) if \(M \) accepts \(w \) then \(L(M') = L(M_1) \), which is a language with property \(P \).
- (2) if \(M \) does not accept \(w \), then \(L(M') = \emptyset \) which, by assumption, is a language that does not have property \(P \).

Now try to do case (2) on your own.