Quiz 1

1. Draw a DFA that accepts \(L = \{ x \in \{1,2\}^* : x \text{ has exactly two 2's} \} \).

2. List, in order, the lexicographically-first four strings of \((111)^*(11111)^*\).

3. Write a regular expression for the language \((aa)^*\). The complement is relative to the alphabet \(\Sigma = \{a\}\).

4. Every NFA-acceptable language can be accepted by an NFA with just a single final state.
 \[\text{True} \quad \text{False} \]

5. Every subset of a regular language is regular.
 \[\text{True} \quad \text{False} \]

6. \(L^*\) is infinite.
 \[\text{True} \quad \text{False} \]

7. If \(M = (Q, \Sigma, \delta, q_0, F) \) is a DFA and \(F = Q \) then \(L(M) = \Sigma^* \).
 \[\text{True} \quad \text{False} \]

8. If \(L \) is accepted by an \(n \)-state NFA then \(L \) is accepted by some \(3^n \)-state DFA.
 \[\text{True} \quad \text{False} \]

9. If \(L \) is a not-regular language and \(F \) is a finite language then \(L \cap F \) is a regular language.
 \[\text{True} \quad \text{False} \]

10. \((L^*)^* = L^*\).
 \[\text{True} \quad \text{False} \]

11. For \(\alpha \) a regular expression, there is an algorithm to decide if \(x \in L(\alpha) \) that is efficient enough to run in a reasonable amount of time on reasonable length \(x, \alpha \).
 \[\text{True} \quad \text{False} \]

12. Let \(M = (Q, \{0,1\}, \delta, q_0, F) \) be a DFA and suppose that \(\delta^*(q_0, x) = \delta^*(q_0, y) \). Then \(x \in L(M) \) if and only if \(y \in L(M) \).
 \[\text{True} \quad \text{False} \]