The Cook-Levin Theorem

Recall that a language \(L \) is \(\text{NP-complete} \) if \(L \in \text{NP} \) and if \(L \) is at least as hard as every language in \(\text{NP} \): for all \(A \in \text{NP} \), we have that \(A \leq_p L \). Our first \(\text{NP-complete} \) language is the hardest to get, since we have no \(\text{NP-hard} \) language to reduce to it. A first \(\text{NP-complete} \) language is provided by the Cook-Levin theorem, due to Stephen Cook (1971, USA/Canada) and, independently, Leonid Levin (1973, but the subject of lectures, in Russia, for some years before). The particular \(\text{NP-complete} \) problem we select is not of great importance; we will use SAT. What is more important is that we show some particular language \(\text{NP-complete} \) so, using it, we can start populating our universe with other known-to-be-\(\text{NP-complete} \) problems.

Theorem [Cook-Levin]. SAT is \(\text{NP-complete} \).

To prove the theorem we must show that SAT \(\in \text{NP} \), which we know, and that, for any \(A \in \text{NP} \), we can poly-time reduce \(A \) to SAT. So fix \(A \in \text{NP} \), some \(\text{NP-complete} \) language. Fix \(M = (Q, \Sigma, \Gamma, \delta, q_0, q_A, q_R) \), a verifier that accepts \(A \). Fix \(p(n) \), a polynomial that upperbounds the running time of \(M \): the number of steps \(\text{TIME}_M(w \sqcup c) \) that \(M(w \sqcup c) \) takes is always less than \(p(n) \), where \(n = |w| \) and \(c \in \Gamma^* \) is arbitrary. We know that

- \(w \in A \Rightarrow (\exists c)M(w \sqcup c) \) accepts
- \(w \notin A \Rightarrow (\forall c)M(w \sqcup c) \) rejects

We haven’t been very explicit about where the certificate \(c \) is drawn from. We may consider it to be an element of \(\Gamma^* \). In fact, given our bound on the running time of \(A \), we may assume that \(c \in \Gamma^{p(n) - 1 - n} \). Strings longer than this will not even have their rightmost characters read.

Nor our job is to, by polynomial-time transformation, map \(w \in \Sigma^* \) to a Boolean formula \(\phi \) such that \(w \in A \) iff \(\phi \) is satisfiable. Our transformation will depend on machine \(M \) and polynomial \(p \). To describe \(\phi \), fix \(w \in \Sigma^* \). Let \(n = |w| \).

First, we specify the variables that \(\phi \) will use. These are

1. \(Q_{q,t} \) for each \(q \in Q \) and \(1 \leq t \leq p(n) \).
 Variable \(Q_{q,t} \) is supposed to mean that machine \(M \) is in state \(q \) at time \(t \).

2. \(H_{i,t} \) for each \(1 \leq i \leq p(n) \), \(1 \leq t \leq p(n) \).
 Variable \(H_{i,t} \) is supposed to mean that the head of the machine \(M \) is at position \(i \) at time \(t \).

3. \(X_{a,i,t} \) for each \(a \in \Gamma \), \(1 \leq i \leq p(n) \), \(1 \leq t \leq p(n) \).
 Variable \(X_{a,i,t} \) is supposed to mean that there is an \(a \)-character at position \(i \) of the tape at time \(t \).

Now “all” we have to do is to write a collection of Boolean constraints that collectively capture the idea that our machine \(M \), on input \(w \sqcup c \) (for the given \(w \) and an arbitrary \(c \)), computes correctly and winds up in an accepting state. If you AND together all the constraints you get a Boolean formula that will be satisfiable iff \(w \in L \). Let’s show how some of these constraints look.
1. The machine starts off in its start state:
\[Q_{q_0,1} \iff 1 \]

2. The head starts off at the left edge:
\[H_{1,1} \iff 1 \]

3. The tape starts off with a \(w \sqcup c \) written on it:
\[
\begin{align*}
X_{w[i],i,1} & \iff 1 \text{ for all } 1 \leq i \leq n \\
X_{\sqcup,n+1,1} & \iff 1 \\
\bigvee_{a \in \Gamma} X_{a,i,1} & \iff 1 \text{ for each } n + 2 \leq i \leq p(n)
\end{align*}
\]

4. You end up in an accept state.
\[
\bigvee_{1 \leq t \leq p(n)} Q_{q_A,t}
\]

5. Each step of the machine is computed according to the transition. In particular, if \(\delta(q,a) = (q',b,R) \) then
\[
(Q_{q,t} \land H_{i,t} \land X_{a,i,t}) \Rightarrow (Q_{q',t+1} \land H_{i+1,t+1} \land X_{b,i,t+1}) \quad \text{for all } 1 \leq i < p(n), 1 \leq t < p(n)
\]
Similarly define the following constraints for when \(\delta(q,a) = (q',b,L) \). Here it is convenient to assume that \(M \) never tries to move its head to the left of the left edge of the tape, which is without loss of generality.
\[
(Q_{q,t} \land H_{i,t} \land X_{a,i,t}) \Rightarrow (Q_{q',t+1} \land H_{i-1,t+1} \land X_{b,i,t+1}) \quad \text{for all } 1 \leq i < p(n), 1 \leq t < p(n)
\]
Finally, if the head is not the immediate vicinity, the tape contents should simply be copied:
\[
(H_{i,t} \land X_{a,j,t}) \Rightarrow X_{a,i,t+1} \quad \text{for all } 1 \leq i,j < p(n), i \neq j, 1 \leq t < p(n)
\]

6. If you’re in one state, you’re not in another; if your head is somewhere, it’s not somewhere else; if something is written on a tape cell, nothing else isn’t written there.
\[
\begin{align*}
Q_{q,t} & \rightarrow \overline{Q_{q',t}} \quad \text{for all } q, q' \in Q, q \neq q', 1 \leq t \leq p(n) \\
H_{i,t} & \rightarrow \overline{H_{j,t}} \quad \text{for all } 1 \leq i,j \leq p(n), i \neq j, 1 \leq t \leq p(n) \\
X_{a,i,t} & \rightarrow \overline{X_{b,i,t}} \quad \text{for all } a,b \in \Gamma, a \neq b, 1 \leq i \leq p(n), 1 \leq t \leq p(n)
\end{align*}
\]

New we should verify the following: (1) The transformation is polynomial time. This is clear. Of course the polynomial depends on \(p(n) \), which depends on \(L \). That is as one would expect. (2) if \(w \in L(M) \) then \(\phi \) is satisfiable. This is easy; the computation of \(M \) on a certificate that demonstrates \(w \in L \) provides a satisfying assignment of \(\phi \). (3) if \(\phi \) is satisfiable, then \(w \in L(M) \). This is the most tricky part. We read the certificate \(c \) that demonstrates \(w \in L \) off of the satisfying assignment of \(\phi \). We have to have added enough constraints in our formula that a satisfying assignment really does correspond to possessing a certificate \(c \) and then performing a correct, accepting computation of \(M \) on input \(w \sqcup c \).