Problem Set 2 – Due Tuesday, April 13, 2010, at 4:15 pm

Instructions: Write up your solutions as clearly and succinctly as you can. Typeset solutions, particularly in *LATEX*, are always appreciated. Don’t forget to acknowledge anyone with whom you discussed problems. Beginning with this homework, homeworks are to be due at **4:15 pm** (no longer 4:40 pm).

Problem 1. Let $\text{canExtend}(L) = \{ x \in L : \text{there exists a } y \in \Sigma^+ \text{ for which } xy \in L \}$.

Part A. What is $\text{canExtend}(\{0,1\}^*)$? What is $\text{canExtend}(\{\varepsilon,0,1,00,01,111,110,1111\})$?

Part B. Prove that if L is DFA-acceptable then $\text{canExtend}(L)$ is too.

A *prefix* of a string y is a string x such that $y = xx'$ for some x'. A prefix is *proper* if it is not the empty string. For any language L, let $\text{noPrefix}(L) = \{ w \in L \text{ no proper prefix of } w \text{ is in } L \}$.

Part C. What is $\text{noPrefix}(\{0,1\}^*)$? What is $\text{noPrefix}(\{\varepsilon,00,01,110,0100,0110,1110,1111\})$?

Part D. Prove that if L is DFA-acceptable then so is $\text{noPrefix}(L)$.

Problem 2. Using the procedure shown in class, convert the following NFA into a DFA for the same language.

```
0, 1
```

```
A ----> 1 ----> B ----> 2 ----> C
```

Problem 3. let $L = \{1^i : 0 \leq i < 10\}$ (recall that $1^0 = \varepsilon$). Prove that there is a DFA M having 10 accepting states that accepts L. Then prove that L cannot be accepted by any DFA having fewer accepting states.

Problem 5. Consider applying the product construction to NFAs $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ and $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ in order to show that the NFA-acceptable languages are closed under intersection.

Part A. Formally specify the product machine $M_3 = (Q, \Sigma, \delta, q_0, F)$.

Part B. Does the construction work—that is, is $L(M_3) = L(M_1) \cap L(M_2)$? Informally argue your conclusion.

Problem 5. Prove that the DFA-acceptable languages are closed under reversal.

Problem 6. Consider trying to show that the NFA-acceptable languages are closed under $*$ (Kleene closure) by way of the following construction: *add ε-arrows from every final state to the start state; then finalize the start state, too.* Show, by finding a small counterexample, that the proposed construction does not work.