Problem Set 5 – Due Friday, May 3, 2013

Problem 1. Given an NFA \(M = (Q, \Sigma, \delta, q_0, F) \), define \(\Lambda(M) = \{ x \in \Sigma^* : \delta^*(q_0, x) \subseteq F \} \). In clear English, explain what is \(\Lambda(M) \). Then prove that \(L \) is regular iff there is a machine \(M \) such that \(L = \Lambda(M) \).

Problem 2. Specify a CFG for the language
\[
L = \{ x \in \{a, b, c\}^* : x \text{ contains an equal number of two different characters} \}.
\]
Make your CFG as simple as possible. (If it isn’t obviously right to the TA, it isn’t right.)

Problem 3. Specify a CFG for \(L = \{ x \neq y : x, y \in \{0, 1\}^+ \text{ and } x \neq y \} \). With diagrams or clear English, explain how your grammar works.

Problem 5. Consider the following CFG \(G = (V, \Sigma, R, \text{STMT}) \):

\[
\begin{align*}
\text{STMT} &\rightarrow \text{ASSIGN} \mid \text{IFTHEN} \mid \text{IFTHENELSE} \\
\text{IFTHEN} &\rightarrow \text{if condition then STMT} \\
\text{IFTHENELSE} &\rightarrow \text{if condition then STMT else STMT} \\
\text{ASSIGN} &\rightarrow a:=1
\end{align*}
\]

with \(V \) being the variables in CAPS and \(\Sigma \) being the tokens in \textbf{bold}. We explained in class why \(G \) (or something just like it) is ambiguous. Provide an unambiguous CFG \(G' \), the simplest you can find, where \(L(G') = L(G) \). Explain why \(G' \) is unambiguous.

Problem 6.

Part A. Prove that every regular language is context free. Do this by by converting a DFA \(M = (Q, \Sigma, \Delta, q_0, F) \) into a CFG \(G = (V, \Sigma, R, S) \) for the same language.

Part B. Prove that every regular language is generated by an unambiguous CFG.

Part C. Prove that every nonempty CFL is generated by an ambiguous CFG.

\[^1L \subseteq \{0, 1, \neq\}^*; \text{ the first “\(\neq \)” is the definition of } L \text{ is just a formal symbol.}\]